APPENDIX D: GEOTECHNICAL INVESTIGATION REPORT

GEOTECHNICAL INVESTIGATION

EASTERN MUNICIPAL WATER DISTRICT MEAD VALLEY SEWER IMPROVEMENTS

Riverside County, California

THE REAL PROPERTY OF

I PAR IN AND

PREPARED FOR:

Mr. Nate Olivas Eastern Municipal Water District 2270 Trumble Road Perris, California 92570

PREPARED BY:

Atlas Technical Consultants LLC 6280 Riverdale Street San Diego, California 92120

March 3, 2023

6280 Riverdale Street San Diego, CA 92120 (877) 215-4321 | oneatlas.com

March 3, 2023

Atlas No. 190063P4.2 Report No. 1962-1

MR. NATE OLIVAS EASTERN MUNICIPAL WATER DISTRICT 2270 TRUMBLE ROAD PERRIS, CALIFORNIA 92570

Subject: Geotechnical Investigation Mead Valley Sewer Improvements Eastern Municipal Water District Riverside County, California

Dear Mr. Olivas,

In accordance with your request and our proposal No. 22-04013R2, Atlas performed a geotechnical investigation to assess the geologic conditions for the project, including potential geologic hazards, and to provide recommendations based on our findings. Our investigation consisted of a review of readily available geologic literature, site reconnaissance, exploratory borings, limited hydrogeologic testing and analysis, geotechnical laboratory testing, and the preparation of this report.

We appreciate the opportunity to be of service on this project. Should you have any questions related to this report, please contact the undersigned at your convenience.

Respectfully submitted, Atlas Technical Consultants LLC

aron Pale

Jason Dale, EIT Project Manager

Doug Skinner, PG 2472 Senior Engineering Geologist GT:SD:JRD:MM:ER:ds Distribution: olivasn@emwd.org

No. C92374

Morteza Mirshekari, PhD, PE C92374 Senior Engineer

CONTENTS

1.	INTF	RODUCT	۲ION	1
2.	SCC	PE OF V	WORK	1
	2.1	Investig	gations and Monitoring Wells	1
	2.2	Laborat	tory Testing	1
	2.3	Geophy	ysical Survey	1
	2.4	Analysi	is and Report Preparation	2
3.	SITE		ROJECT DESCRIPTION	2
4.	GEC	LOGY A	AND SUBSURFACE CONDITIONS	2
	4.1		ic Hazards	
		4.1.1	Fault-Rupture Hazard	
		4.1.2	CBC Seismic Design Parameters	4
		4.1.3	Liquefaction and Dynamic Settlement	
		4.1.4	Flooding, Tsunamis, and Seiches	5
		4.1.5	Landslides and Slope Stability	5
		4.1.6	Subsidence	6
		4.1.7	Hydro-Consolidation	6
5.	CON		DNS	6
6.	REC	OMMEN	NDATIONS	6
	6.1	Earthwo	ork	6
		6.1.1	Site Preparation	7
		6.1.2	Excavation Characteristics	7
		6.1.3	Oversized Material	7
		6.1.4	Temporary Excavations	7
		6.1.5	Temporary Shoring	8
		6.1.6	Temporary Dewatering	8
		6.1.7	Remedial Grading – Manhole Foundations	8
		6.1.8	Expansive Soil	8
		6.1.9	Compacted Fill	8
		6.1.10	1	
		6.1.11	Bottom Stabilization	9
			Grading Plan Review	
	6.2	•	es	
		6.2.1	Pipeline Support	
		6.2.2	Backfill	
		6.2.3	Pipe Bedding	
		6.2.4	Thrust Blocks	
		6.2.5	Modulus of Soil Reaction	10

	6.3	Manholes						
		6.3.1	Foundations	10				
		6.3.2	Allowable Soil Bearing Pressure	11				
		6.3.3	Manhole Backfill	11				
	6.4	Prelim	inary Pavement Section Recommendations	11				
	6.5	Soil Co	orrosivity	12				
	6.6	Geote	chnical Engineering During Construction	12				
7.	CLO	SURE .		12				
8.	REF	ERENC	ES	13				

TABLES

Table 1:	Observed Groundwater Level	.4
Table 2:	2022 California Building Code / ASCE 7-16 Site Specific Seismic Parameters	. 5
Table 3:	Preliminary Pavement Structural Sections	12

FIGURES

Figure 1:	Site Vicinity Map
Figure 2:	Subsurface Exploration Map
Figure 3:	Regional Geology Map
Figure 4:	California Fault Activity Map

APPENDICES

- Appendix I Subsurface Exploration
- Appendix II Laboratory Testing
- Appendix III Seismic Refraction Study

1. INTRODUCTION

This report presents the results of the geotechnical investigation Atlas performed for the subject project. It is our understanding the project will consist of the design and construction of approximately 3½ miles of new sewer pipeline along Cajalco Road in Riverside County, California. Figure 1 presents the site vicinity.

2. SCOPE OF WORK

2.1 Investigations and Monitoring Wells

Atlas performed a geologic investigation to address potential geologic hazards and geotechnical conditions that could impact the proposed construction. Pertinent documents reviewed included published reports and mapping, aerial photographs, in-house geotechnical reports, and available reports by others. Atlas explored subsurface conditions by drilling thirteen (13) borings to depths of up to approximately 41½ feet below the existing ground surface using limited access and truck-mounted drill rigs equipped with a hollow stem auger in September 2022. Additionally, in January 2023, Atlas installed two temporary groundwater monitoring wells to depths of about 40 feet below ground surface using limited access and truck-mounted drill rigs equipped with a hollow stem auger and coring capabilities. Figure 2 presents the approximate locations and depths of the borings and monitoring wells.

An Atlas engineer and geologist logged the borings and collected samples of the material encountered for geotechnical laboratory testing. Soils and rocks recovered during the field investigation were observed in the field for soil and/or groundwater contamination with visual and olfactory methods. Soils were classified according to the Unified Soil Classification System illustrated in the Subsurface Exploration Legend (Appendix I). The rocks encountered were classified in general accordance with the California Department of Transportation (Caltrans) rock classification system. The boring logs and well design diagrams are presented in Appendix I.

2.2 Laboratory Testing

Selected samples from the exploratory borings were tested to evaluate pertinent soil classification and engineering properties. The laboratory testing consisted of in-situ moisture and density, particle-size distribution, percent finer than #200 sieve, corrosivity, direct shear, expansion index, Atterberg limits, R-value, and unconfined compressive strength. The laboratory testing standards and results are presented in Appendix II.

2.3 Geophysical Survey

Atlas performed a seismic refraction study at select locations along the proposed alignment to develop subsurface velocity profiles to assess depth of bedrock and apparent rippability of the subsurface materials on January 3 and 4, 2023. The seismic refraction study is presented in Appendix III.

2.4 Analysis and Report Preparation

The results of the field and laboratory tests were evaluated to develop conclusions and recommendations regarding the geotechnical aspects of the proposed project. The report includes the following:

- A plot plan showing the boring locations
- Exploration logs with soil characterization detailing the subsurface conditions noted at the boring locations
- A description of the above ground geologic conditions
- Groundwater levels and the necessity for dewatering
- Excavation characteristics of the subsurface materials encountered
- Backfill recommendations and the suitability of excavated materials for use as backfill and bedding
- Allowable temporary excavation side slope and shoring recommendations
- Lateral earth pressures and resistance to lateral loads
- Support for the pipeline
- Potential pipeline settlements
- Appropriate types of bedding and backfill materials as well as placement and compaction procedures
- Soil modulus E' for pipeline design
- Subgrade compaction beneath pavements
- New flexible pavement structural sections
- Corrosivity of earth materials

3. SITE AND PROJECT DESCRIPTION

The project alignment is along Cajalco Road between Wood Road and Robinson Street in Riverside County, California. The site topography generally descends towards the east, with site elevations along the alignment ranging from approximately 1577 to 1671 above mean sea level. Preliminary project documents indicate that proposed invert elevations extend to between 8 and 16 feet below the existing ground surface.

4. GEOLOGY AND SUBSURFACE CONDITIONS

The site is located within the Peninsular Ranges Geomorphic Province of California, which stretches from the Los Angeles basin south into Baja California. This province is characterized as a series of northwest-trending mountain ranges separated by subparallel fault zones and a coastal plain of subdued landforms. The mountain ranges are underlain primarily by Mesozoic metamorphic rocks that were intruded by plutonic rocks of the southern California batholith, while the coastal plain is underlain by subsequently deposited marine and non-marine sedimentary

formations. The site is located in the coastal plain. The materials observed in our borings consisted of fill, very old axial-channel deposits, young wash deposits, and Val Verde tonalite (granitic rock). Figure 3 presents the regional geology, and descriptions of the materials encountered are provided below.

Fill (Qf): Fill was encountered in some of our borings below the existing ground surface and extends to depths of up to approximately 5 feet below ground surface. The fill materials encountered generally consisted of moist, medium dense sandy silt, silty sand, and clayey sand. Debris and boulders may be encountered.

<u>Very old axial-channel deposits (Qvoa)</u>: Very old axial-channel deposits were encountered in a number of our borings at both existing ground surface and below the fill and extends up to about 24 feet below ground surface. The materials encountered generally consisted of moist, loose to medium dense poorly graded sand with silt, and loose to dense silty and clayey sand.

<u>Young wash deposits (Qywa):</u> Young wash deposits were encountered below fill in Borings B-12S and B-13S and extends to a depth of up to approximately 18 feet below ground surface. The materials encountered generally consisted of moist, medium dense to very dense silty and clayey sand.

<u>Val Verde tonalite (Kvt)</u>: Val Verde tonalite was encountered in each of the borings below the surficial soils and extends to the total depths explored. The materials encountered generally consisted of intensely weathered to decomposed, soft to moderately hard igneous rock. The drilled cuttings could be characterized as moist to wet, poorly graded sand with silt or clay, silty and clayey sand, sandy silt, and hard, lean clay with sand. Gravels and cobbles may be expected. Encountering boulders is also possible.

Groundwater: Groundwater was observed as shallow as 13 feet below existing ground surface. Available literature indicates the groundwater could be shallower than approximately 10 feet below ground surface near Boring B-15S (SWRCB, 2022). It should be recognized that groundwater conditions may vary at a site over time. Fluctuations in the groundwater level may occur due to variations in ground surface topography, subsurface geologic conditions and structure, rainfall, irrigation, broken pipes, changes in site drainage, and other factors. These types of conditions can be most effectively assessed at the time of construction. Table 1 presents the observed groundwater levels relative to the ground surface.

To assist in assessing groundwater levels during construction, temporary groundwater monitoring wells were installed at boring locations B-2S and B-6S to observe the groundwater activity. The monitoring wells should be periodically monitored, and groundwater elevations be recorded by a qualified individual.

Boring Location	Depth to Encountered Groundwater (ft)	Boring Location	Depth to Encountered Groundwater (ft)		
B-1S	22	B-9S	25		
B-2S*	13	B-10S	27		
B-3S	26	B-11S	Not encountered		
B-4S	18	B-12S	39		
B-5S	33	B-13S	Not encountered		
B-6S*	14	B-14S	29		
B-7S	37	B-15S	28		
B-8S	Not encountered	Empty			

Table 1: Observed Groundwater Level

*Indicates monitoring well was installed. See Appendix I for installation details.

4.1 Geologic Hazards

4.1.1 Fault-Rupture Hazard

Faulting in the Riverside County area is dominantly characterized by a series of Quaternary-age and older fault zones that typically consist of several individual echelon faults, generally striking in a northerly to northwesterly direction. Active fault zones are those that have shown conclusive evidence of faulting during the Holocene Epoch (the most recent 11,000 years) while potentially active fault zones have demonstrated movement during the Pleistocene Epoch (11,000 to 2.6 million years before the present) but no evidence of movement during Holocene time. Faults that can be shown to have experienced no movement within the Holocene or Pleistocene Epochs are generally considered to be inactive. The closest active fault, the Glen Ivy North fault, is about 10 miles west of the site (Jennings, 2010). Figure 4 presents the California fault activity. The project alignment is not located in an Alquist-Priolo Earthquake Fault Zone. No signs of faulting and no active faults are known to underlie or project toward the site. The probability of fault rupture is considered negligible.

4.1.2 CBC Seismic Design Parameters

A geologic hazard likely to affect the project is ground shaking because of movement along an active fault zone in the vicinity of the subject site (USGS, 2020). Based on the subsurface conditions encountered during our investigation and available online resources (Wills et al. 2015), the alignment could generally be classified as Site Class C. The mapped site coefficients and adjusted earthquake spectral response parameters in accordance with the 2022 CBC are presented below in Table 2. Please note that the seismic parameters are provided for the approximate coordinates tabulated for the site.

Table 2: 2022 California Building Code / AS	CE 7-16 Site Specific Seismic Parameters
---	--

Site Coordinates								
Latitude	Latitude Longitud							
33.8391°	-117.28	319°						
Site Coefficients and Spectral Response Ac	celeration Parameters	Values						
Site Class		C – Very Dense Soil						
Site Coefficients, Fa	1.2							
Site Coefficients, F_{ν}	1.446							
Spectral Response Acceleration at Short Period, Ss	esponse Acceleration at Short Period, S _s 1.5g							
Spectral Response Acceleration at 1-Second Period,	0.554g							
Design Spectral Acceleration at Short Period, SDS	1.2g							
Design Spectral Acceleration at 1-Second Period, SD1	0.534g							
Site Modified Peak Ground Acceleration, PGA _M	0.6g							

4.1.3 Liquefaction and Dynamic Settlement

Liquefaction occurs when loose, saturated, generally fine sands and silts are subjected to strong ground shaking. The soils lose shear strength and become liquid, potentially resulting in large total and differential ground surface settlement as well as possible lateral spread during an earthquake. Liquefiable material is not mapped along the project alignment. Because of the relatively dense soils and depth to groundwater, it is our opinion that the potential liquefaction and dynamic settlement significantly affecting the proposed project is low.

4.1.4 Flooding, Tsunamis, and Seiches

Flood Insurance Rate Maps via the Federal Emergency Management Agency (FEMA) Flood Hazard Map online database were reviewed to evaluate if the subject site is located within an area susceptible to flooding (FEMA, 2022). The project site is designated as Flood Hazard Zone A, which designates the areas with a 1% annual chance of flooding. Published depth or base flood elevations are not provided for Zone A. The potential for flooding should be appropriately considered.

The site is not located within a mapped area on the State of California Tsunami Inundation Maps (CDC, 2022b). Seiches are periodic oscillations in large bodies of water such as lakes, harbors, bays, or open reservoirs. The site is not located adjacent to any bodies of water subject to seiches.

4.1.5 Landslides and Slope Stability

There are no mapped or known landslides underlying or adjacent to the project site (CDC, 2021a). Additionally, evidence of slope instabilities or landslides was not observed at the time of our site reconnaissance. The potential for slope instabilities or landslides to affect the site is considered low.

4.1.6 Subsidence

The project is not located in an area of known subsidence associated with fluid withdrawal (groundwater or petroleum) (USGS, 2022). Due to this, as well as the presence of very dense deposits, the potential for subsidence is low.

4.1.7 Hydro-Consolidation

Hydro-consolidation can occur in recently deposited sediments (less than 10,000 years old) that were deposited in a semi-arid environment. Examples of such sediments are eolian sands, alluvial fan deposits, and mudflow sediments deposited during flash floods. The pore spaces between the particle grains can re-adjust when inundated by groundwater, causing the material to consolidate. Due to the relatively dense and moist nature of the material encountered beneath the site, the potential for hydro-consolidation occurrence in the subsurface layers is considered low.

5. CONCLUSIONS

Based on the results of our investigation, we consider the project feasible from a geotechnical standpoint provided that the recommendations of this report are followed. In our opinion, the site conditions are suitable to install the pipelines using traditional open excavation trenching techniques; however, the contractor should be prepared for excavating in very dense granular materials, as well as igneous rock formations. The presence of cobbles and boulders are also expected at the site. There are no known geologic hazards of sufficient magnitude that preclude the intended improvements. The main geotechnical considerations affecting the project is the potential for difficult trench excavations and potentially groundwater. The materials anticipated below the pipeline depths are generally expected to provide good pipeline support. However, dewatering is anticipated depending on the elevation of groundwater at the time of construction.

6. **RECOMMENDATIONS**

The remainder of this report presents recommendations regarding earthwork construction as well as preliminary geotechnical recommendations for the design of the proposed improvements. These recommendations are based on empirical and analytical methods typical of the standard-of-practice in southern California. If these recommendations appear not to address a specific feature of the project, please contact our office for additions or revisions to the recommendations.

6.1 Earthwork

Grading and earthwork should be conducted in accordance with the local standards and the recommendations of this report. The following recommendations are provided regarding specific aspects of the proposed earthwork construction. These recommendations should be considered subject to revision based on field conditions observed by our office during construction.

6.1.1 Site Preparation

Site preparation should begin with the removal of existing improvements, vegetation, and debris. Subsurface improvements that are to be abandoned should be removed, and the resulting excavations should be backfilled and compacted in accordance with the recommendations of this report. Pipeline abandonment can consist of capping or rerouting at the project perimeter and removal within the project perimeter. If appropriate, abandoned pipelines can be filled with grout or slurry as recommended by and observed by the geotechnical consultant.

6.1.2 Excavation Characteristics

It is anticipated that excavation can be achieved with heavy-duty earthwork equipment in good working order. Excavations in fill may be locally unstable and may contain construction debris, cobbles, or boulders. Difficult drilling and excavation should be anticipated in areas with dense to very dense granular materials and/or igneous rock. The contractor should mobilize equipment capable of excavating granitic materials with variable fracturing, weathering, rock abrasiveness, and strength/hardness rock conditions. Rock breakers, carbide tipped teeth, or carbide/diamond tipped coring equipment may be required to excavate/drill hard rock materials.

6.1.3 Oversized Material

Excavations may generate oversized material. Oversized material is defined as rocks or cemented clasts greater than 6 inches in largest dimension. Oversized material should be broken down to no greater than 6 inches in the largest dimension for use within non-structural fill, such as landscape fill, or disposed of off site in accordance with regulatory requirements.

6.1.4 Temporary Excavations

Temporary excavations 4 feet deep or less can be made vertically. Temporary excavations deeper than 4 feet should not be steeper than 1½:1 (horizontal: vertical), per Cal/OSHA Type C soil classification. Excavations in competent bedrock can be made vertically. Unweathered (i.e., fresh), unfractured rock is considered competent. The faces of temporary slopes should be inspected daily by the contractor's competent person before personnel are allowed to enter the excavation. Zones of potential instability, sloughing, or raveling should be brought to the attention of the engineer and corrective action implemented before personnel begin working in the trench.

Slopes steeper than those described above will require shoring. Soldier piles and lagging, corrugated metal pipe, internally braced shoring such as trench boxes or speed shoring could be used. If trench boxes or metal pipe are used, the soil immediately adjacent to the shoring is not directly supported. Ground surface deformations adjacent to the excavation could be greater when these methods are used compared to other methods of shoring leading to distress to overlying improvements.

If open trenches are to be maintained during the rainy season, berms are recommended along the tops of the trenches to prevent runoff water from entering the excavation.

6.1.5 Temporary Shoring

For design of cantilevered shoring, an active soil pressure equal to a fluid weighing 40 pounds per cubic foot (pcf) can be used for level retained ground or 65 pcf for 2:1 (horizontal:vertical) sloping ground. A passive soil pressure equal to a fluid weighing 330 pcf can be used for the design of cantilevered shoring. These values assume that shoring will take place above the groundwater level. The passive pressure should be reduced by one half below the groundwater table. The surcharge loads on shoring from traffic and construction equipment adjacent to the excavation can be modeled by assuming an additional 2 feet of soil behind the shoring.

6.1.6 Temporary Dewatering

During our geotechnical investigation, groundwater was observed as shallow as 13 feet below existing ground surface (see Table 1). Available literature indicates the groundwater could be shallower than approximately 10 feet. Additionally, groundwater seepage may occur locally along the project alignment due to local irrigation or following heavy rain. Shallow groundwater may impact project construction. An experienced and qualified specialty contractor should evaluate the need and design of a dewatering system, as appropriate. The contractor's geotechnical engineer should review proposed dewatering system designs.

6.1.7 Remedial Grading – Manhole Foundations

Proposed manhole foundations can be supported by firm and unyielding formational material, 2 feet of compacted fill, or geogrid. If placed on compacted fill, the on-site soils should be excavated to a depth of at least 2 feet below planned subgrade elevation. If competent, formational materials are exposed, excavation need not be performed. An Atlas representative should observe conditions exposed in the bottom of excavations to evaluate whether additional excavation is recommended.

6.1.8 Expansive Soil

The on-site materials tested have expansion indices ranging from 18 to 38, classified as very low to low expansion potential. The grading and foundation recommendations presented in this report assume materials with a low expansion potential.

6.1.9 Compacted Fill

On-site materials, except for soil containing roots, debris, and rock greater than 6 inches, can be used as compacted fill or trench backfill. Fill and backfill should be placed in horizontal lifts at a thickness appropriate for the equipment spreading, mixing, and compacting the material, but generally should not exceed 8 inches in loose thickness. Fill and backfill should be moisture conditioned within 2% of optimum moisture content and compacted to at least 90% relative compaction. The top 12 inches of subgrade beneath pavement should be compacted to at least 95%. The maximum dry density and optimum moisture content for evaluating relative compaction should be obtained using ASTM D1557.

6.1.10 Imported Soil

Imported soil should consist of predominately granular soil, free of organic matter, and rocks less than 6 inches. Imported soil should be observed and, if appropriate, tested by Atlas prior to transport to the site.

6.1.11 Bottom Stabilization

In areas where wet, soft, or yielding excavations bottoms are encountered, a geogrid reinforced soil mat could be installed to provide support for proposed manhole foundation construction. To stabilize soft or yielding bottoms, Atlas recommends placing one layer of Tensar® Triax TX-160 reinforcing geogrid or equivalent on the removal surface (e.g. excavation bottom) followed by at least 6 inches of aggregate base compacted using lightweight equipment to a relative compaction of 90%. A second layer of geogrid followed by at least 6 inches of compacted based should be placed. If yielding is still observed upon proof rolling, an additional layer of geogrid should be placed on the compacted base followed by at least 6 inches of aggregate base.

6.1.12 Grading Plan Review

Atlas should review the grading plans and earthwork specifications to ascertain whether the intent of the recommendations contained in this report have been implemented, and that no revised recommendations are needed due to changes in the development scheme.

6.2 **Pipelines**

6.2.1 Pipeline Support

It is anticipated that most of the materials along the pipeline alignment will provide adequate support for the pipe, although loose, soft, and otherwise unsuitable materials could be encountered. Unsuitable materials encountered near trench bottom levels should be excavated to competent material as determined by the geotechnical consultant. The excavated materials can be replaced with compacted fill or with pipe bedding material, as described below. Unsuitable materials should be removed from the full width of the trench. The bottoms of the excavations should be observed by the geotechnical consultant prior to placement of pipe bedding.

6.2.2 Backfill

Utility trench sections should conform to the minimum requirements of the EMWD and local jurisdictions. Backfill should be placed in loose lifts not exceeding 6 to 8 inches in thickness, moisture conditioned to near optimum moisture content, and compacted to at least 90% relative compaction.

On-site materials, except for soil containing roots, debris, and rock greater than 6 inches, can be used as compacted fill or trench backfill, provided that they have an expansion index of 50 or less. The maximum dry density and optimum moisture content for the evaluation of relative compaction should be determined in accordance with ASTM D1557.

6.2.3 Pipe Bedding

Pipe bedding as specified in the "Greenbook" can be used. Bedding material should consist of clean sand having a sand equivalent not less than 30 and should extend to at least 12 inches above the top of pipe. Alternative materials meeting the intent of the bedding specifications are also acceptable. Samples of materials proposed for use as bedding should be provided to the engineer for inspection and testing before the material is imported for use on the project. The onsite materials are not expected to meet "Greenbook" bedding specifications. The pipe bedding material should be placed over the full width of the trench. After placement of the pipe, the bedding should be brought up uniformly on both sides of the pipe to reduce the potential for unbalanced loads. No voids or uncompacted areas should be left beneath the pipe haunches. Ponding or jetting the pipe bedding should not be allowed.

6.2.4 Thrust Blocks

For level ground conditions, a passive earth pressure of 330 pounds per square foot (psf) per foot of depth below the lowest adjacent final grade can be used to compute allowable thrust block resistance. A value of 140 psf per foot should be used below groundwater level, if encountered.

6.2.5 Modulus of Soil Reaction

A modulus of soil reaction (E') of 1,000 pounds per square inch can be used to evaluate the deflection of buried flexible pipelines. This value assumes that granular bedding material is placed adjacent to the pipe and is compacted to at least 90% relative compaction.

6.3 Manholes

6.3.1 Foundations

The planned manholes can be supported on mat foundations with bottom levels on compacted fill, reinforced geogrid mats, or competent formational material.

Thickness and reinforcement of the mat foundation should be in accordance with the recommendations of the project structural engineer. Mat foundations typically experience some deflection due to loads placed on the mat and the reaction of the soils underlying the mat. A design modulus of subgrade reaction, K, of 150 pounds per cubic inch (pci) may be used in evaluating such deflections on dense to very dense granular soils or formational materials, and 75 pci on other loose soils. These values are based on an area of one square foot and should be adjusted for large mats. Adjusted values of the modulus of subgrade reaction, K_{BxB}, can be obtained from the following equation for square mats of various widths:

$$K_{B\times B} = K \left[\frac{\mathrm{B}+1}{\mathrm{2B}} \right]^2 (pci)$$

Where, B is the width of the mat in feet.

Where the mat slab is rectangular, adjusted values of the modulus of subgrade reaction, K', can be obtained from the following equation:

$$K' = \frac{K_{B \times B}(1 + 0.5\left(\frac{B}{L}\right))}{1.5}(pci)$$

Where, B is the width and L is the length of the mat in feet.

6.3.2 Allowable Soil Bearing Pressure

The planned manholes can be supported on mat foundations with bottom levels on compacted fill, reinforced geogrid mats, or competent formational material. An allowable bearing capacity of 3,000 psf can be used. The bearing value can be increased by $\frac{1}{3}$ when considering short term loads.

Lateral loads will be resisted by friction between the bottoms of footings and passive pressure on the faces of footings and other structural elements below grade. An allowable coefficient of friction of 0.30 can be used. Passive pressure can be computed using a lateral pressure value of 300 psf per foot of depth below the ground surface for level ground conditions. Reductions for sloping ground should be made. The passive pressure can be increased by ¹/₃ when considering the total of loads, including wind or seismic forces. The upper 1 foot of soil should not be relied on for passive support unless the ground is covered with pavements or slabs.

6.3.3 Manhole Backfill

Manhole backfill should consist of granular, free-draining material having a sand equivalent of 20 or more. The backfill zone is defined by a 1:1 plane projected upward from the bottom of the manhole. Expansive or clayey soil should not be used. Backfill should be compacted to at least 90% relative compaction. Backfill should not be placed until the manhole walls have achieved adequate structural strength. Compaction of manhole backfill will be necessary to minimize settlement of the backfill and overlying settlement-sensitive improvements. However, some settlement should still be anticipated. Alternatively, a controlled low-strength material such as sand cement slurry may be considered for backfill. The controlled low-strength material should be thoroughly consolidated, have a maximum slump of 4 inches, and the slurry combined graded should meet the requirements of the local authority with jurisdiction.

6.4 Preliminary Pavement Section Recommendations

Atlas utilized the Caltrans Highway Design Manual (Caltrans, 2020) to prepare preliminary recommendations for flexible pavements. An R-value of 13 and assumed Traffic Indexes of 7, 9, and 11 were used for the design of preliminary pavement sections. The actual subgrade support characteristics should be evaluated after grading and final pavement sections are provided. Table 3 presents recommended flexible structural sections for the assumed Traffic Indexes and subgrade R-value:

Traffic Type	Traffic Index	AC ¹ over AB ² (inches)	Full Depth AC (inches)
	7.0	6 over 10	11
Roadways	9.0	6 over 18	16
	11.0	10 over 18	22

Table 3: Preliminary Pavement Structural Sections

¹ AC: Asphalt Concrete

² AB: Aggregate Base

The top 12 inches of subgrade should be scarified, moisture conditioned to near optimum moisture content, and compacted to at least 95% relative compaction (ASTM D1557). Soft or yielding areas should be removed and replaced with compacted fill or aggregate base. Aggregate base and asphalt concrete should conform to the Caltrans Standard Specifications and should be compacted to at least 95% relative compaction. Aggregate base should have an R-value of not less than 78. All materials and methods of construction should conform to good engineering practices and Caltrans standard specifications.

6.5 Soil Corrosivity

Representative samples of the on-site soils from the project alignment were tested to evaluate corrosion potential. The test results are presented in Appendix II. The project design engineer can use the sulfate results in conjunction with ACI 318 to specify the water/cement ratio, compressive strength and cementitious material types for concrete exposed to soil. A corrosion engineer should be contacted to provide specific corrosion control recommendations.

6.6 Geotechnical Engineering During Construction

The geotechnical engineer should review project plans and specifications prior to bidding and construction to check that the intent of the recommendations in this report has been incorporated. Observations and tests should be performed during construction. Atlas recommends a geotechnical engineer or engineering geologist be on site to observe tunneling operations. If the conditions encountered during construction differ from those anticipated based on the subsurface exploration program, the presence of the geotechnical engineer during construction will enable an evaluation of the exposed conditions and modifications of the recommendations in this report or development of additional recommendations in a timely manner.

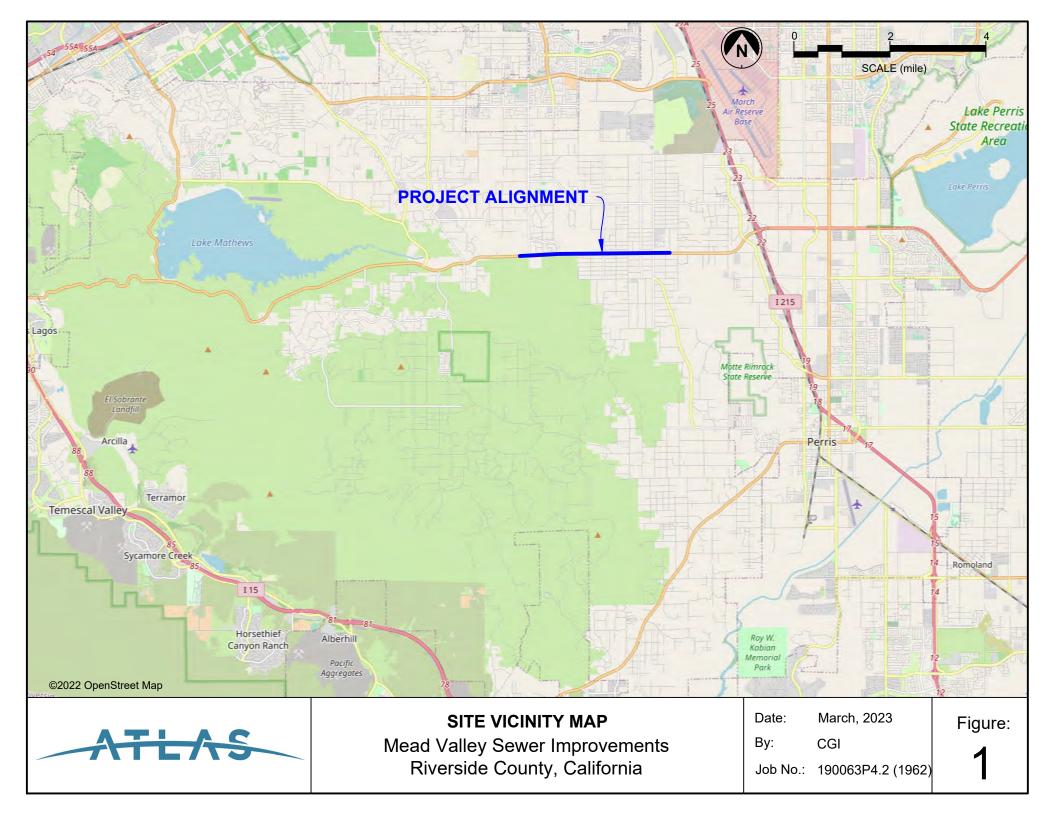
7. CLOSURE

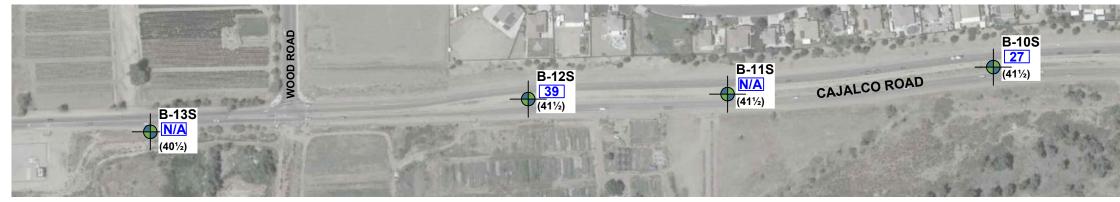
Atlas should be advised of changes in the project scope so that the recommendations contained in this report can be evaluated with respect to the revised plans. Changes in recommendations will be verified in writing. The findings in this report are valid as of the date of this report. Changes in the condition of the site can occur with the passage of time, whether they are due to natural processes or work on this or adjacent areas. In addition, changes in the standards of practice and government regulations can occur. Thus, the findings in this report may be invalidated wholly or

in part by changes beyond our control. This report should not be relied upon after a period of two years without a review by us verifying the suitability of the conclusions and recommendations to site conditions at that time.

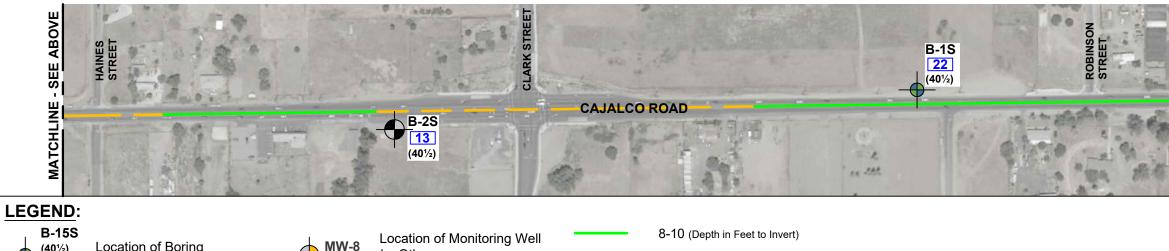
In the performance of our professional services, we comply with that level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions and in the same locality. The client recognizes that subsurface conditions may vary from those encountered at the boring locations and that our data, interpretations, and recommendations are based solely on the information obtained by us. We will be responsible for those data, interpretations, and recommendations, but shall not be responsible for interpretations by others of the information developed. Our services consist of professional consultation and observation only, and no warranty of any kind whatsoever, express or implied, is made or intended in connection with the work performed or to be performed by us, or by our proposal for consulting or other services, or by our furnishing of oral or written reports or findings.

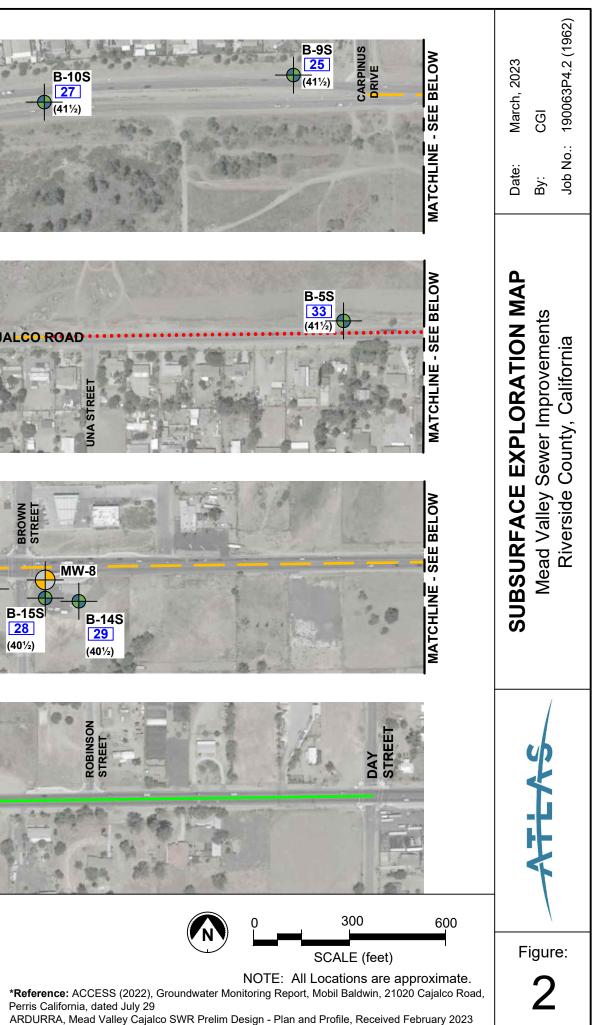
8. **REFERENCES**

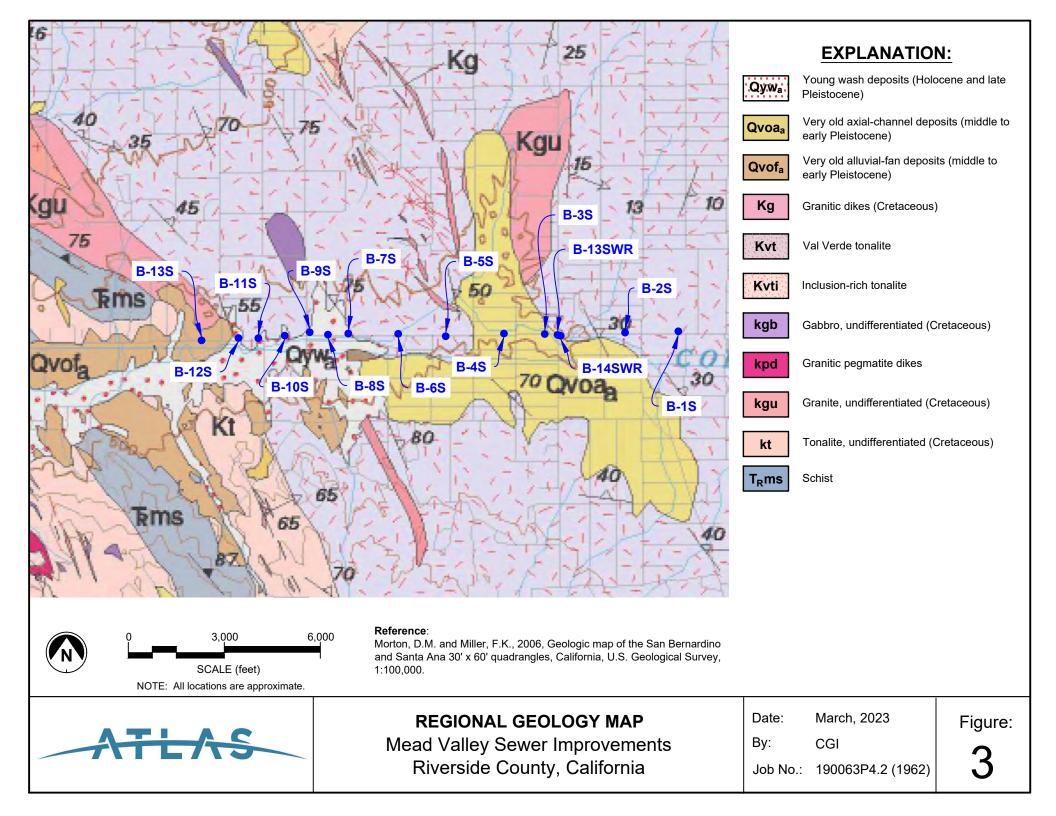

- California Department of Conservation (CDC), 2022a, Landslide Inventory Interactive Map, accessed in December: https://maps.conservation.ca.gov/cgs/lsi/app/
- California Department of Conservations (CDC), 2022b, California Tsunami Maps and Data, accessed in December: https://www.conservation.ca.gov/cgs/tsunami/maps
- California Department of Transportation (Caltrans), 2018, Standard Specifications.
- California Department of Transportation (Caltrans), 2020, Highway Design Manual, accessed in December: https://dot.ca.gov/programs/design/manual-highway-design-manual-hdm
- California Emergency Management Agency, California Geological Survey, University of Southern California (Cal EMA), 2009, Tsunami Inundation Map for Emergency Planning, June 1.
- Federal Emergency Management Agency (FEMA), 2022, FEMA Flood Map Service Center, accessed in December: https://msc.fema.gov/portal/home

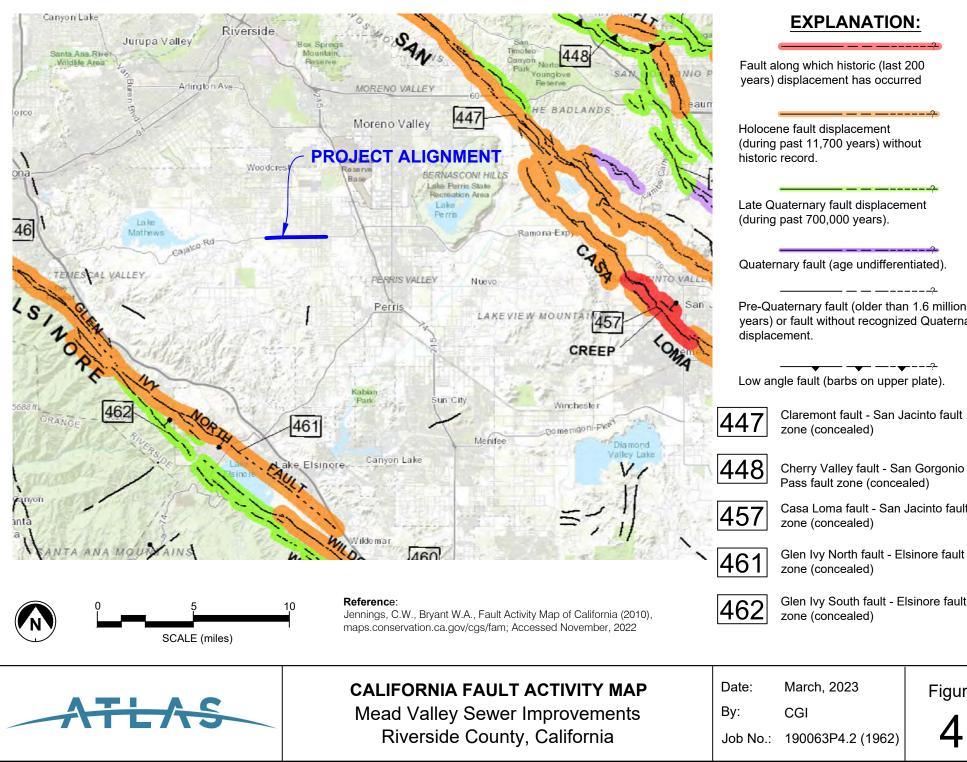

Historic Aerials, 2022, https://historicaerials.com/viewer, accessed in December.

- International Code Council (2018), 2019 California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2 of 2, Based on the 2018 International Existing Building Code, Effective January 1, 2020.
- Jennings, C.W. and Bryant, W.A., 2010, Fault Activity Map of California, California Geologic Survey, Geologic Data Map No. 6.
- Morton, D.M. and Miller, F.K., 2006, Geologic map of the San Bernadino and Santa Ana 30' x 60' Quadrangles, California, U.S. Geological Survey, Scale 1:100,000.


- State Water Resources Control Board (SWRCB), 2022, Geotracker, accessed in December: https://geotracker.waterboards.ca.gov/
- Structural Engineers Association of California (SEAOC), 2020, OSHPD Seismic Design Maps, accessed in May 2022: https://seismicmaps.org
- U.S. Geological Survey (USGS), 2020a, USGS Earthquake Scenario Map, accessed in May 2022: https://earthquake.usgs.gov/scenarios/catalog/bssc2014/
- U.S. Geological Survey (USGS), 2020b, USGS Geologic Hazards Science Center, U.S. Quaternary Faults, accessed in May 2022: https://usgs.maps.arcgis.com/ apps/webappviewer/
- U.S. Geological Survey (USGS), 2022, Areas of Land Subsidence in California, accessed in December: https://ca.water.usgs.gov/land_subsidence/california-subsidence-areas.html






10-13 (Depth in Feet to Invert)

13-16 (Depth in Feet to Invert)

	Location of Boring (Depth in Feet)		Location of Monitoring Well by Others (ACCESS, 2022*)	
B-6S (40)	Location of Monitoring Well (Proposed Depth in Feet)	39	Depth to Encountered Groundwater (in Feet)	•••••

EXPLANATION:

Fault along which historic (last 200 years) displacement has occurred

Holocene fault displacement (during past 11,700 years) without historic record.

Late Quaternary fault displacement (during past 700,000 years).

Quaternary fault (age undifferentiated).

Pre-Quaternary fault (older than 1.6 million years) or fault without recognized Quaternary displacement.

Low angle fault (barbs on upper plate).

Claremont fault - San Jacinto fault zone (concealed)

Cherry Valley fault - San Gorgonio Pass fault zone (concealed)

Casa Loma fault - San Jacinto fault zone (concealed)

zone (concealed)

Glen Ivy South fault - Elsinore fault zone (concealed)

ate:	March, 2023	
y:	CGI	
oh No ·	190063P4 2 (1962)	

Figure:

APPENDIX I SUBSURFACE EXPLORATION

Relatively undisturbed samples were obtained using a modified California (CAL) sampler, which is a ring-lined split tube sampler with a 3-inch outer diameter and 21/2-inch inner diameter. Standard Penetration Tests (SPT) were performed using a 2-inch outer diameter and 1%-inch inner diameter split tube sampler. The CAL and SPT samplers were driven with a 140-pound weight dropping 30 inches. The number of blows needed to drive the samplers the final 12 inches of an 18-inch drive is noted on the boring logs as "Driving Resistance (blows/ft. of drive)." SPT and CAL sampler refusal was encountered when 50 blows were applied during any one of the three 6-inch intervals, a total of 100 blows was applied, or there was no discernible sampler advancement during the application of 10 successive blows. The SPT penetration resistance was normalized to a safety hammer (cathead and rope) with a 60% energy transfer ratio in accordance with ASTM D6066. The normalized SPT penetration resistance is noted on the boring logs as "N60." When auger refusal was encountered the drill rig used a diamond HQ core bit for rock coring to advance through the rock and recover rock core for identification and testing. Disturbed bulk samples were obtained from the SPT sampler and the drill cuttings. The soils are classified in accordance with the Unified Soil Classification System. The rock encountered were classified in accordance with the Caltrans rock classification system.

To assist in assessing groundwater levels during construction, temporary groundwater monitoring wells were installed at boring locations B-2S and B-6S to observe the groundwater activity. The monitoring wells should be periodically monitored, and groundwater elevations be recorded by a qualified individual. A diagram presenting the well construction is presented in Appendix I.

		MAJOR DIVI	SIONS								
			CLEAN GRAVELS	GW		WELL-GRADED GRAVEL SAND	S WITH OR V	VITHOUT			
	200 SIEVE	GRAVELS MORE THAN HALF	WITH LESS THAN - 15% FINES	GP		Poorly graded grav Without Sand	POORLY GRADED GRAVELS WITH OR WITHOUT SAND				
		COARSE FRACTION IS LARGER THAN NO. 4 SIEVE	GRAVELS WITH	GM		SILTY GRAVELS WITH O	RWITHOUT	SAND	_		
	AINED SO RSER THA		15% OR MORE FINES	GC		CLAYEY GRAVELS WITH	I OR WITHOU	IT SAND			
	COARSE-GRAINED SOILS HALF IS COARSER THAN NO.		CLEAN SANDS	SW		WELL-GRADED SANDS \ GRAVEL	WITH OR WIT	HOUT			
	CO/ THAN HALI	SANDS MORE THAN HALF	WITH LESS THAN - 15% FINES	SP		POORLY GRADED SAND GRAVEL	IS WITH OR V	VITHOUT			
	MORE T	COARSE FRACTION IS FINER THAN NO. 4 SIEVE SIZE	SANDS WITH 15%	SM		SILTY SANDS WITH OR V	WITHOUT GR	AVEL			
			OR MORE FINES	SC		CLAYEY SANDS WITH O	R WITHOUT (GRAVEL			
	SIEVE			ML		INORGANIC SILTS OF LC PLASTICITY WITH OR W GRAVEL					
	200	SILTS AN		CL		INORGANIC CLAYS OF L PLASTICITY WITH OR W GRAVEL					
	NED SOIL			OL		ORGANIC SILTS OR CLA MEDIUM PLASTICITY WI OR GRAVEL	AYS OF LOW TO /ITH OR WITHOUT SAND				
	FINE-GRAINED SOILS HALF IS FINER THAN NO.		-	MH		INORGANIC SILTS OF HI OR WITHOUT SAND OR		TY WITH			
	E THAN		SILTS AND CLAYS LIQUID LIMIT GREATER THAN 50%			INORGANIC CLAYS OF H OR WITHOUT SAND OR		CITY WITH			
	MORI			ОН		ORGANIC SILTS OR CLAYS OF HIGH PLASTICITY WITH OR WITHOUT SAND OR GRAVEL					
		HIGHLY ORGANI	C SOILS	PT	$\frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}} \frac{\sqrt{1}}{\sqrt{1}}$	PEAT AND OTHER HIGH	LY ORGANIC	SOILS			
	BOLS			RELA		Y OF COHESIONLESS SOILS	CONG		OHESIVE SOILS		
AMPLE TYPES		CON - CONSOLIDATIO	N		TIVE DENSITY	SPT N60	CONSISTENCY	SPT N60	POCKET PENETROME		
AL Modified California Sar PT Standard Penetration 1		DS - DIRECT SHEAR ENV - ENVIRONMENT GW - ENVIRONMENT	AL, SOIL	VERY	LOOSE	BLOWS/FOOT 0 - 4 4 - 10	VERY SOFT SOFT	0 - 2 2 - 4	MEASUREMENT (TS 0 - 0.25 0.25 - 0.50		
			DISTRIBUTION OMPRESSIVE STRENGTH % PASSING №. 200 SIEVE	DENS VERY	IM DENSE E DENSE	10 - 30 30 - 50 OVER 50	MEDIUM STIFF STIFF VERY STIFF HARD	4 - 8 8 - 15 15 - 30 OVER 30	0.50 - 1.0 1.0 - 2.0 2.0 - 4.0 OVER 4.0		
			TER SYMBOLS	(1-3/8 IN (ASTM-	ICH I.D.) SPLIT-E 1586 STANDARE	F 140 LB HAMMER FALLING 30 INCH 3ARREL SAMPLER THE LAST 12 INC 9 PENETRATION TEST). VAL (1st 6 INCH INTERVAL) IS NOT /	HES OF AN 18-INC	CH DRIVE			
Atlas Technical Consultants 6280 Riverdale Street San Diego, California 92120 Telephone: (619) 280-4321											

SITE Rive DRILL Baja DRILL CME SAMP	OG	OF	: т	ES	ΤB	ORI	NG					_				ROJECT NU	MBER	B-	1S
								Me	ad Valley S	ewer Impr	rovements	6	STAR		1962.0	00-1 END			
Rive	rside Co	ounty	, CA	L									9/21			9/21/22		1	
	ING CON	IPAN	IY						DRILL ME						GED BY			WED BY	
Baja	Explora		ENT					BORIN		Stem Auge		GROUND ELE	V. (ft)	HK DEP	[H/E] F	/. GROUND	DAS/		
								8		40.5	(14)	1670	(••)			F DRILLING	•		48.00 ft
	LING ME					N	OTES									F DRILLING			
140-	<u>Ib Hamr</u>	ner,		n Drop			Hamm	ner Efficie	ncy = 80.0%	% N ₆₀ ~1.33	3N _{SPT}			I¶ AF	TER DR	ILLING			
	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG				PTION AND							LAB ESTS
	- - - - - - - - - - - - - - - - - - -		CAL	50/6		3.6	109.5		Wet, fin	T (SP-SM	I), loose t IALITE (H veatherec Ih SILT (S	EL DEPOSI o medium del (vt): IGNEOL I to decompos P-SM), very	JS ROO sed, so dense,	OWN, CK (C ft to n mois	Noist, f	Z DIORITE) ely hard; (P o medium g), grayish /oorly rained).		DS WA
	-							Z	fine to n	nedium gra water obse	ained).					. •			
	F																		
	\ TL/	5		6280 San I	River Diego,	dale S Califo	Consulf Street ornia 9 9) 280-4	2120		C S L V F	DF THIS B SUBSURF, OCATION WITH THE PRESENT	MARY APPLIE ORING AND A ACE CONDIT IS AND MAY (PASSAGE O ED IS A SIMPL NS ENCOUN	AT THE ONS M CHANG F TIME. IFICAT	TIME AY DI E AT THE ION C	of Dr Ffer a This LC Data	lling. T other Dcation		Figu I-	

ATE																	
GOOD HOPE & MEAD VALLEY WATER S	L	OG	OF	: Т	ES	ΓB	ORI	NG		AS PROJECT	T NAME Sewer Improvemen	c			PROJECT NU 2.000-1	JMBER	B-1S
VALL	SITE							-	IVIE	au vaney S		.0	START		END		SHEET NO.
EAD	River	side Co NG CON	unty	, CA									9/21/		9/21/22	DEVIE	2
⊼⊠		Explorat		IT						DRILL ME	Stem Auger			LOGGED HK	БТ	DAS	WED BY
HOH				ENT					BORIN	IG DIA. (in.)	TOTAL DEPTH (ft)	GROUND ELE		DEPTH/EL	EV. GROUND	WATER	(ft)
	CME-								8		40.5	1670					ft / Elev 1648.00 ft
פּ ה		I <mark>NG ME</mark> b Hamn			Drop			OTES	or Efficio	$n_{00} = 80.00$	% N ₆₀ ~1.33N _{SPT}				OF DRILLING		
EMW	140-1	JTIAITI								ncy = 00.07	1.33N _{SPT}				DRILLING	-	
ERVICES/190063P4.2 -	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE		BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG								LAB TESTS
ERING NUN-DEDIGN DE		-		SPT	50/6					fine to n (Micace	,	RADED SAND	with Cl	_AY (SP-:	SC), very der	ise, mois	t,
JED ENGINE		- 30		SPT	50/2					Hard dri Grayish	brown; (fine to co	arse grained).					
- 33/23 10:53 - \\NSD SCS1 COMDFS_ROOTDATACLIENTSIEAS IERN MUNICIPAL WATER DISTRICT190063P4 - EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES130063P4 2 - EMWD,		-		SPT/	50/2						se in fine content). BOR	NG TERMINA oundwater obs					
1	- 	- - 45 - - -															
AILAS LUG REPURI	-1	TEA	5		6280 San [River Diego,	dale S Califo	consult treet ornia 9) 280-4	2120		OF THIS I SUBSURF LOCATIO WITH TH PRESENT	IMARY APPLIE BORING AND A FACE CONDITI NS AND MAY E PASSAGE OF ED IS A SIMPL DNS ENCOUNT	AT THE ONS MA CHANGE TIME.	TIME OF E V DIFFER AT THIS THE DAT	DRILLING. AT OTHER LOCATION A		Figure I-2

)G ()F	M	JNI	ТО	RW	ELL	ATLAS P		F NAME wer Improven	nent	s.		ATLAS P 1962.0		NUMB	ER	B-23	S
SITE								Meda	railey e			5	STAR	π	END			SHEET NO.	
Rive	rside Co	ounty MPAN	, CA IY					DF	RILL ME	THOD			1/11	1/23 LOGGED BY	1/11/2 '		REVIE	3 WED BY	
Baja	Explora									Stem Auger				SD			DAS/		
	NG EQU -95	JIPME	-N I					80RING D	IA. (IN.)	TOTAL DEPTH 40.5	I (ft)	1654	:v. (ft)	DEPTH/ELE			•		.00 ft
SAMPI	LING ME						TES					1001		T AT END O			-		
140-	lb Hamı	mer,∶		ר Drop			lammer	Efficiency	= 80.0%	∕6 N ₆₀ ~1.33N _{SP}	T			¥ AFTER DF	RILLING				
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG				SCRIPTION A								L DIAGRAM	Л
	-									CHANNEL DEF				Y SAND (SC	;),			 Well Box Cement Bac ■ Cement Bac ■ Bentonite Ch 	
	-5		SPT	18	24		De	nse.										— 2" PVC Sch.	. 40
- 1645			SPT	52	69		Ve	ry dense, v	veakly c	cemented, decr	eas	ed fines.							
	_ 15 _		SPT	57	76		VA bro	L VERDE	TONAL ely wea	ed at 13 feet. <u>ITE (Kvt)</u> : IGN thered to deco nse, moist, fine	mpo	sed, soft to m	oderat	ely hard; (CL	AYEY				
- - - - - - - - - - - - - - - - - - -	- - 20		SPT	62	83													— 2" PVC Sch. Slotted	. 40,
	-						(In	creased fin	ies)									Filter Pack (i sand)	#2
	\ TE/	15		6280 San [River Diego	dale Str , Califor	nia 921:	20		OF TH SUBS LOCA WITH	HIS E URF TIOI THE	MARY APPLIE BORING AND A ACE CONDITI NS AND MAY (E PASSAGE OF ED IS A SIMPL	AT THE ONS M CHANG TIME	TIME OF DR AY DIFFER A E AT THIS LO . THE DATA	illing. T othef Dcation			Figure	
				гејер	none	. (019)	280-432	<u> </u>				INS ENCOUNT			, IOT UAL			I-3	

GOOD HOPE & MEAD VALLEY WATER SI BUD BUD SITE SITE SITE SITE SITE SAME																					
L	OG	6 O	F	M	ONI	TOI	RW	'ELL		PROJECT	F NAME wer Impr	ovement	e			LAS PF 962.00	ROJECT	NUMBE	ER	B-2S	
									Meau	valley 0		overnern	5	STAR	r '		END		5	SHEET NO.	
Riv	erside	E Cou	inty, P AN	CA Y						ORILL ME	THOD			1/1	1/23 LOGG	ED BY	1/11/2			4 VED BY	
Baj	a Exp										Stem Auge				SD				DAS/N		
일 DRIL 응 CM	LING 1E-95		PME	NT					80RING	DIA. (in.)	40.5	EPTH (ft)	GROUND EL 1654	EV. (ft)			/. GROUN F DRILLI		•	t) / Elev 1641.0	0 ft
SAM	PLING	6 MET						OTES							▼ AT E	END OF	DRILLI	NG			
140)-lb H				n Drop			Hammer	Efficiency	y = 80.0%	% N ₆₀ ∼1.3	3N _{SPT}			I¶ AFT	ER DR	ILLING				
ELEVATION ELEVATION (#)	DEPTH	(ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG						CLASSIFICA						WELL	_ DIAGRAM	
	- - 25 - 3 -	60	-	SPT	62	83 99		SA SA (cc	own, inten ND (SC), ontinued)	isely wea , very der ID (SM),	ithered to	decompo , fine to r	US ROCK (G sed, soft to n nedium grain sh brown and	noderat ed, wea	ely hard	d; (ĊĹ	AYEY				
1911	3 - -	5		SPT	50/5	67/5		Mc	oderately s	soft to me	oderately I	hard; (Mo	oderately cem	ented.)						- 2" PVC Sch. 4 Slotted	0,
	-4	0		SPT	50/6) (St	rongly ce	mented.))										
	4 - -	5									BORING T		TED AT 40½								
	AT	c/ ~	5		6280	River	dale S					of this e Subsurf Ocatio	MARY APPLIE BORING AND ACE CONDIT NS AND MAY	AT THE IONS M CHANG	E TIME C IAY DIFI GE AT TI	of Dri Fer At His Lo	lling. Fothef			Figure	
AILAS								rnia 921:) 280-432			F	PRESENT	E PASSAGE C ED IS A SIMP ONS ENCOUN	LIFICAT	TON OF	THE A	ACTUAL			I-4	

GOOD HOPE & MEAD VALLEY WALEK SIZE SIZE SIZE SIZE SIZE SIZE SIZE SIZE	LOG	OF	= T	ES	ΤB	ORI	NG		AS PROJECT		te					IBER	B-3S
SITE								IVIE	ead valley S	ewer Improvemer	its	STAR		1962.00	END	SH	IEET NO.
	erside Co	ounty	, CA	۱								9/29			9/29/22		5
≊ DRIL ∞ ⊔ Bai	a Explora		NY						DRILL ME	Stem Auger			SD	GED BY		DAS/MN	
			ENT					BORI	NG DIA. (in.)	TOTAL DEPTH (ft	GROUND ELE		DEPT		. GROUND V	VATER (ft)	
	IE-75 PLING MI		<u> </u>				OTES	8		40.5	1638						Elev 1612.00 ft
)-lb Ham			n Drop				ner Efficie	encv = 80.0%	% N ₆₀ ~1.33N _{SPT}					DRILLING		
ELEVATION		BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	R ₆₀	MOISTURE (%)		GRAPHIC LOG			RIPTION AND						LAB TESTS
	- - - - - - 5 - -			24		5.7	115.2		WAL VE brownisi	PLD AXIAL-CHAN dense, reddish b model for the second secon	rown, moist, fir (<u>Kvt)</u> : IGNEOI veathered to de	JS ROC	ed sa	UUARTZ	DIORITE),		AL EI RV WA
	- 15 -		CAL						× ·	se in fines conten h gray; (fine to me	,						
	- - 5- -	5		6280 San I	River Diego,	dale S Califo	Consul Street prnia 9 9) 280-	2120		OF THIS SUBSUR LOCATIO WITH TH PRESEN	MMARY APPLIE BORING AND / FACE CONDIT INS AND MAY (IE PASSAGE O TED IS A SIMPI ONS ENCOUN	at the Ions Ma Change F time. Lificati	TIME AY DIF E AT THE	OF DRII FER A1 THIS LO DATA	lling. Tother Cation		Figure I-5

ATER S																		
EY W/	L	OG	OF	= Т	ES	ΓB	ORI	NG				anto.					IBER	B-3S
GOOD HOPE & MEAD VALLEY WA	SITE			-		-			I.	ieau valley	Sewer Improveme	สแร	STAR		1962.00	END		SHEET NO.
EAD	Rivers	side Co	unty	, CA	L.						ETHOP		9/29/			9/29/22		6
×≊		NG CON		IY							IETHOD			SD	GED BY		DAS/N	
Щ Ц		Exploration EQU		ENT					BOR) TOTAL DEPTH (ft) GROUND EL	LEV. (ft)		H/ELEV	. GROUND V		
	CME-	-	_						8		40.5	1638						/ Elev 1612.00 ft
					D			IOTES		ionov - 00 (N/ NL . 4 00N							
- MM	140-1	o Hamr			тор Погор					iency = 80.0	0% N ₆₀ ~1.33N _{SPT}			⊥ AF		ILLING		
KVICES/190063P4.2 - 1	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG			RIPTION ANE						LAB TESTS
N N N N				SPT	50/6					la se a se a se a	VERDE TONALITE						ard [.]	
	-1610	- - - 30 -		SPT	50/5					→ (SILT) (Increa)	(' SAND (SM), ver ase in fines conter dwater observed a	y dense, moist nt).						
	-1605 - 									(Increa	ase in fines conter	ıt).						
SIEAU		_		SPT	50/4							RING TERMIN				-		
- 33/23 10:53 - ND) SCS (COMDFS, FOO IVALACIENT SEAS JERN MUNICIPAL WATER DISTRICT190063P4 - EMVD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190063P4 2 - EMVD,	-1595 -1590	- - - - - - -										Groundwater o	bserved a	at 26	Feet			
AILAS LUG REPURI -	-1	TEA	5		6280 San I	River Diego,	dale S , Califo	Consulf street ornia 9) 280-4	2120		OF THI SUBSU LOCAT WITH T PRESE	JMMARY APPLI S BORING AND RFACE CONDI IONS AND MAY I'HE PASSAGE (NTED IS A SIMP FIONS ENCOUN) AT THE TIONS MA ' CHANGE OF TIME. PLIFICATI	TIME Ay Dif E at 1 The I	of Dri Fer a This Lo Data	lling. Fother Cation		Figure I-6

SITE River Baja DRILLI CME SAMPL																				
	OG	OF	: Т	ES	ΓB	DR	ING	3			F NAME wer Impro	womon	6				ROJECT NUI 00-1	MBER	E	B-4S
SITE									Ivieau	valley S		Jvemen	5	STAR		2.00	END		SHEE	T NO.
	side Co	unty	, CA Y							RILL ME	THOD			9/27	7/22 LOGGED	BY	9/27/22	REVIE		7 8 Y
ĕ ⊎ Baja	Explora		•								Stem Auge	r			SD			DAS/		
		IPME	INT							DIA. (in.)		EPTH (ft)	GROUND ELE	EV. (ft)			/. Ground \)F drilling	•		/ 1621 00 ft
	-75 .ING ME	тно	D			1	NOTES	3	8		41.5		1639		-		F DRILLING			7 1021.00 10
	b Hamr	ner,	30-ir	n Drop			Ham	mer l	Efficiency	/ = 80.0%	% N ₆₀ ∼1.33	3N _{SPT}				RDR	ILLING			
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N_{60}	GRAPHIC		FII	I (0ft) S				N AND CLAS			ined				LAB TESTS
	- - - -5 -		CAL	42				<u>VA</u> inte	L VERDE	TONAL	<u>.ITE (Kvt)</u> :	IGNEO	US ROCK (Q	UARTZ	Z DIORIT	E), I	light brown,	ense,		PD
	- 		CAL	47				(Inc	crease in	medium	to coarse (grained	sand).							
- 1625	- 15 -		CAL	53				Ligl	ht brown.											
- 	- - 20		CAL	49			∑ ×				ed at 18 fee ncrease in		ase feldspar).							
	_								ayish to ye ined).	ellowish I	brown; (PC	DORLY	GRADED SAI	ND (SF	P), dense,	wet	t, fine to coa	arse		
	TEA	5		6280 San [Techr Rivero Diego, bhone:	dale S Calif	Street ornia	9212	20		0 S U W P	OF THIS E UBSURF OCATIO /ITH THI RESENT	MARY APPLIE BORING AND A ACE CONDIT NS AND MAY (PASSAGE 0 ED IS A SIMPL NS ENCOUN	at the Ions M Chang F time Lificat	TIME OF AY DIFFE E AT THIS THE DAT ION OF T	DRI R A S LO FA	lling. Tother Dcation			igure I-7

ATER SI																
E	LOC	60	F٦	TES	ΓB	ORI	NG	ATLAS PRO		NAME ewer Improvement	s		ATLAS PI 1962.00	ROJECT NUN	IBER	B-4S
	oroido	Count		^					, _		_	STAR 9/27	т	END 9/27/22		SHEET NO.
	erside LING C	OMPA	NY	٩					LL ME			9/21	LOGGED BY	9/2//22	REVIE	8 WED BY
u Baj Q DRIL	a Explo L ING E									Stem Auger TOTAL DEPTH (ft)	GROUND ELE	EV. (ft)	SD DEPTH/ELEV	. GROUND W	DAS/	
	E-75 PLING					NC	OTES	8		41.5	1639		♀ AT TIME C ▼ AT END OI			ft / Elev 1621.00 ft
				in Drop				Efficiency =	80.0%	% N ₆₀ ∼1.33N _{SPT}			¥ AT END OI ¥ AFTER DR			
2 - EM		u ا	L L L	_⊢												
	DEPTH	(II) BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG				DESCRIPTION						LAB TESTS
GN SE			SPT	Г 36	48			ayish to yello ined). <i>(conti</i>		brown; (POORLY (GRADED SAI	ND (SF	P), dense, wet	, fine to coa	se	
I-DESI			5	- 30	40											
							:									
							 Yel	lowish brow	n; (PC	ORLY GRADED	SAND with SI	LT (SP	-SM), dense,	wet, fine to	coarse	
Z161							gra	ined).								
	30															
AS-NE			CAL	42												
374 - F									SM).	very dense, wet, fi	ne to coarse o	arained				
9061- 160								,	,,,	, , , ,			,			
	35			-			•									
	-		SPI	F 51	68											
	-															
	-															
≩—160 z	0-															
ASTE	-40			_			Inc	crease in fin	es cor	ntent).						
	_		SP	Г 65	87		•									
A\CLIE	\vdash										RMINATED /					
	-															
20 21 21 21 21 21 21 21 21 21 21 21 21 21	5-															
	-45															
	_															
SD.SC	_															
0:53 - 7	-															
2 22 22 22 22 22 22 22 22 22 22 22 22 2	0-															
ATLAS LOG REPORT -				Atlas	Tech	nical Co	onsultant	s		OF THIS E	Mary Applie Boring and A	AT THE	TIME OF DRI	LLING.		Figure
	ATE	15		6280	River	dale St				LOCATIO	ACE CONDITI NS AND MAY (E PASSAGE O	CHANG	E AT THIS LO			i iyure
TLAS.							280-432			PRESENT	ED IS A SIMPL	IFICAT	ION OF THE	ACTUAL		I-8
∢																

	.OG	OF	= т	ES	ΓB	ORI	NG		AS PROJECT ead Valley S	F NAME wer Improvement	5		ATLAS P 1962.0	ROJECT NUM	IBER	B-5S
SITE								101			5	STAR	т	END	:	SHEET NO.
Rive DRILL	rside Co ING CON								DRILL ME	THOD		9/27	/22 LOGGED BY	9/27/22	REVIEW	9 VED BY
Baja	Explora		-					DODI		Stem Auger		A (54)	SD		DAS/	
	ING EQL E-75	IPIVIE						8	NG DIA. (IN.)	TOTAL DEPTH (ft) 41.5	1634	ν. (π)	DEPTH/ELE\ ♀ AT TIME C		•	t) :/ Elev 1601.00 ft
SAMP	LING ME			_			OTES							-		
140-	lb Hamr			ר Drop				er Efficie	ency = 80.0%	% N ₆₀ ∼1.33N _{SPT}				RILLING		
SITE Rive DRILL Baja DRILL SAMP 140- 1630	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG			PTION AND (LAB TESTS
-	_									f <u>f</u>): SILTY SAND (S low plasticity.	M), medium c	lense,	brown, moist	t, fine to med	lium	
- 	-)- 5								VERY C dense, l micaceo	DLD AXIAL-CHANI ight brown, moist, 1 ous.	NEL DEPOSIT ine to medium	°S (Qv n grain	<u>oa)</u> : CLAYE∖ ed, low plasti	Y SAND (SC) city, white m), ottling,	
	-		CAL	43		10.6	129.3		Fine gra	ained, weakly ceme	nted, more mi	caceo	us.			WA
-1625	;- 10 -		CAL	80/12"					reddish	RDE TONALITE (I brown, intensely w Y SAND (SC), ver ed).	eathered to de	compo	osed, soft to i	moderately h	ard;	
	- 		CAL	50/6					(Decrea	se in fines).						
	- 20 -		CAL	82/9"					(Increas	se in moisture).						
)_								Reddish	brown; (SANDY S	ILT (ML), very	/ dens	e, moist, fine	to medium g	grained).	
	\ T':/	5		6280 San [River Diego,	dale S Califo	ornia 9	2120		OF THIS E SUBSURF LOCATION WITH THE	MARY APPLIES ORING AND A ACE CONDITIONS AND MAY C PASSAGE OF ED IS A SIMPL	T THE ONS M HANG	TIME OF DR AY DIFFER A E AT THIS LC THE DATA	ILLING. T OTHER DCATION		Figure
				i elep	none	(619) 280-4	4321			ED IS A SIMPL			AUTUAL		I-9

SITE River DRILLII Baja DRILLII CME SAMPL	OG	OF	- Т	ES	ΓB	ORI	NG				PROJEC		E Improvement	s		ATLAS P 1962.0	ROJECT NUM	IBER	B-5S
SITE									10	icac	valicy c		mprovement		STAR		END		SHEET NO.
River	side Co NG COM	unty	, CA								DRILL ME		1		9/27	7/22 LOGGED BY	9/27/22	REVIEV	10 NED BY
Baja	Explorat		••								Hollow					SD		DAS/N	
DRILLI	NG EQU		ENT							ING		TOTA	AL DEPTH (ft)	GROUND ELE	EV. (ft)			ATER (f	t)
	-75 I NG ME	тно	D			N	OTES		8			41.	5	1634		-	F DRILLING		: / Elev 1601.00 ft
140-l	b Hamn			n Drop				ner E	Effic	ienc	y = 80.0°	% N ₆₀ ∼	-1.33N _{SPT}				_		
_		щ	Щ				≻												
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC	POG					IPTION AND					LAB TESTS
-	_		SPT	50	67						Reddisl (continu		n; (SANDY S	SILT (ML), ver	y dens	e, moist, fine	to medium g	rained).	
140-I (II) (II) 1605											(Increa	se in s	and content)						
-	—30 -		SPT	45	60						Yellowis grained		wn, (SILTY S	SAND (SM), ve	ery der	nse, moist, fir	e to medium		
- - 1600	-									Ţ	Ground	lwater	observed at 3	33 feet.					
	35 		CAL	34							(Poorly	Grade	d SAND (SP), medium de	nse, w	et, fine to coa	arse grained).		
	- 40		SPT	33	44						Reddisl			AY with SAN				<u>-</u>	
-	_													NG TERMINA oundwater ob			г		
-1595	- 45 																		
	_																		
	TEA	5		6280 San [River Diego,	dale S Califo	Consuli Street Ornia 9) 280-4	212	20				OF THIS E SUBSURF LOCATIO WITH THI PRESENT	IMARY APPLIE BORING AND / ACE CONDIT NS AND MAY E PASSAGE O ED IS A SIMPL DNS ENCOUN	AT THE ONS M CHANG F TIME LIFICAT	TIME OF DR AY DIFFER A E AT THIS LC . THE DATA ION OF THE	ILLING. T OTHER DCATION		Figure I-10

	DG ()F	M	ONI	ΤO	RW	ELL	ATLAS PROJEC	F NAME Sewer Improvement	6		ATLAS PF 1962.00	ROJECT NU	MBER	B-6S
SITE										5	STAR		END		SHEET NO.
Rive	erside Co							DRILL ME			1/11	/23 LOGGED BY	1/13/23	DEVIE	11 EWED BY
ĕ DRILL ĕ ⊔ Baia	Explora		a r						Stem Auger wt HQ	rock corina		SD		DAS	
	ING EQU		ENT						TOTAL DEPTH (ft)		V. (ft)	DEPTH/ELEV		WATER	(ft)
	E-95 Pling me	тно				N	DTES	8	40	1618		¥ AT TIME O ▼ AT END OF			ft / Elev 1604.00 ft
2 140·	-lb Hami			ו Drop				Efficiency = 80.09	% N₀₀~1.33N₅ _{PT}			¥ AFTER DR			
		щ	Щ												
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG		DESCRIPT	FION AND CLASSI	FICATION			AB STS C		LL DIAGRAM pe: PVC
	- - 5- -						SA		CHANNEL DEPOS			/			Well Box Cement Backfill Bentonite Chip
19000014 - EMWU, AS-NEEDE 	-		SPT	4	5		SIL	.TY SAND (SM), i	oose, brown, moist	, fine grained.					— 2" PVC Sch. 40
			SPT	9	12		∇	dium dense.	ed et 14 feet				a Air ea Air ea Airte		
	45						Gro	oundwater observ	ed at 14 feet						
			SPT	36	48		coa VA	arse grained.), very dense, grayi _ ITE (Kvt) : IGNEO	US ROCK (QL	JARTZ	2			— 2" PVC Sch. 40, Slotted
	- 20 -		SPT	50/3"	67/3"		sof	DRITE), grayish b t to moderately ha e to medium grain	rown, intensely wea ard; (SILTY SAND (ed).	athered to deca SM), very den	ompos se, mo	ed, pist,	<u> 3 m.//23 m.//34 m.//34 m</u>		Filter Pack (#2 sand)
2 FOG KEPOKI 3/3/23 II	- A TL/	15		6280 San [River Diego,	dale St Califo	rnia 9212	20	OF THIS E SUBSURF LOCATIOI WITH THE	MARY APPLIES ORING AND A ACE CONDITIC NS AND MAY C PASSAGE OF	t the DNS M Hang Time.	TIME OF DRI AY DIFFER AT E AT THIS LO THE DATA	lling. Tother Cation		Figure
AILA				Telep	hone	: (619)	280-432	21		ED IS A SIMPL			ACTUAL		I-11

Ϋ́Ξ																		
	DG ()F	M	ONI	TO	RV	VELL		B PROJEC			_					NUMBER	B-6S
SITE								Mea	d Valley S	ewer Impr	rovement	S	STAR		1962.00	00-1 END		SHEET NO.
Rive	erside Co	ounty	, CA	\									1/11			1/13/2		12
			١Y								or we LIO	rook ooring		LOG SD	GED BY			I EWED BY S/MM
	a Explora		ENT					BORING				rock coring GROUND ELE	V. (ft)		H/ELEV	. GROUN		
CM								8		40		1618						0 ft / Elev 1604.00 ft
	LING ME -Ib Hami			n Dron			NOTES Hammer	Efficienc		% N₀₀~1.3	3N					F DRILLIN		
					,				.y - 00.0 .	0 N ₆₀ 1.0	JINSPT			<u>¥</u> AF		ILLING		
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	Neo	GRAPHIC						FICATION		-		AB STS	WE	ELL DIAGRAM
	- - - 		SPT		27/5"		DIC	ORITE), it to mod	grayish b lerately ha	rown, inter	nsely wea Y SAND (US ROCK (Q athered to dec SM), very der	ompos	ed,				
	- 35 - -		RC				Fre	esh to sli oderately				erately hard, s	slightly	to				2" PVC Sch. 40, Slotted
	-		RC					QD = 98 covery =	: 100						ι	JC		
IEAS I	40									G TERMIN ndwater of		T 40 FEET at 14 Feet						
	- 45 -																	
AILAS LUG KEPUKI -	ATE/	5		6280 San	River Diego,	dale , Cali	Consultan Street fornia 9212 9) 280-432	20			DF THIS E SUBSURF LOCATION WITH THE	MARY APPLIE BORING AND A ACE CONDITI NS AND MAY (PASSAGE OI ED IS A SIMPL	AT THE ONS M/ CHANGI TIME.	TIME AY DIF E AT THE	OF DRI FER A1 THIS LO DATA	lling. 1 other Cation		Figure
AIL				reie	JIONE:	. (01	əj 200-432	<u> </u>				INS ENCOUNT						I-12

GOOD HOPE & MEAD VALLEY WATER SI GOID HOPE & MEAD VALLEY WATER SI																	
ΈΥ Μ	L	OG	OF	- Т	ES	ΓB	ORI	NG		AS PROJECT	FNAME ewer Improvemer	te		ATLAS F 1962.0	ROJECT NUN	IBER	B-7S
	ITE								101				STAR	т	END	S	HEET NO.
MEAL	River:	side Co NG CON	unty IPAN	; CA IY						DRILL ME	THOD		9/22	2/22 LOGGED B	9/22/22	REVIEW	13 ED BY
DFE &		Explora		-					DOD		Stem Auger		• • • • • • • • • • • • • • • • • • • •	HK		DAS/M	
	CME-	NG EQU .75	IPIVIE						8	NG DIA. (IN.)	TOTAL DEPTH (ft) 40	1597	:ν. (π)		V. GROUND V OF DRILLING	. ,	Elev 1560.00 ft
Ög S		ING ME			_			OTES				1			F DRILLING		
EMWL	140-1	o Hamr			ו Drop				er Effici	ency = 80.0%	% N ₆₀ ∼1.33N _{SPT}			¥ AFTER DI	RILLING		
RVICES/190063P4.2 -	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG			IPTION AND					LAB TESTS
L WATER DISTRICT/190063P4 - EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190063P4.2 - EMWD,	1595	-									DLD AXIAL-CHAN dense, brown, m				Sand (SM), I	loose to	
	1590	5 -		CAL	29					Medium	dense, slightly m	caceous.					
	1585	- 10 		CAL	15		9.6	112.9		Trace g	ravel.						WA
	1580	- 15 - -		CAL	19					Increase	e in moisture.						
	1575	- 20 - -		CAL	50/6					brown, i	RDE TONALITE ntensely weathere SAND (SP), very	d to decompos	sed, so	ft to modera	tely hard; (Po		
AILAS LUG KEPUKI	-1	TEA	5		6280	River	dale S	Consult street ornia 93			OF THIS SUBSUR LOCATIC WITH TH	IMARY APPLIE BORING AND A FACE CONDITI NS AND MAY (E PASSAGE OI	AT THE ONS M CHANG TIME	TIME OF DR AY DIFFER A E AT THIS LO THE DATA	ILLING. TOTHER DCATION		Figure
AILA					Telep	hone	(619) 280-4	4321			TED IS A SIMPL			ACTUAL		I-13

SITE River DRILLI DRILLI DRILLI CME SAMPL	OG	OF	- Т	ES	ΓB	ORI	NG		AS PROJECT		-				ROJECT NU	JMBER		B-7S
		<u> </u>	-					Me	ad Valley S	ewer Improvement	S	START		962.00	00-1 END			ET NO.
River	side Co	unty	, CA									9/22/	/22		9/22/22			14
	NG CON		IY						DRILL ME					ED BY		REVIE		BY
Baja l	Explora NG EQU		=NT					BORIN		Stem Auger	GROUND ELE	EV. (ft)	HK	H/ELEV	. GROUND	DAS		
CME								8	• • • • • • • • • • • • • • • • • • •	40	1597						• •	ev 1560.00 ft
SAMPL	ING ME						OTES								DRILLING			
140-1	b Hamr	ner,		ר Drop			Hamm	ner Efficie	ncy = 80.0%	% N ₆₀ ∼1.33N _{SPT}			¥ AF1	ER DR	ILLING	-		
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG	VAL VE	RDE TONALITE (IPTION AND	JS ROC	CK (QI	JARTZ), grayish	1	LAB TESTS
- 1570 - 1570 	- - - 30		SPT						brown, i	ntensely weather SAND (SP), very o	d to decompos	sed, sof	t to m	oderate	ely hard; (F	Poorly		
1265	- - 35		SPT)	50/4					Hard dri	illing.								
	-								Ground	water observed at a	37 feet.							
	_								(Increas	se in coarse materi	al).							
2	40	I	I			I					ING TERMIN							
10-11 (1) 70 65 60 55 50 60 55 50 50 55 50 50 55 50 50 55 50 50 55 50 50	- 45 -									Gr	oundwater ob	iserved a	at 37 ∣	Feet				
	- \ T E A	ch		6280 San I	River Diego,	nical C dale S Califc (619	treet ornia 9:	2120		OF THIS I SUBSURF LOCATIO WITH THI PRESENT	MARY APPLIE 30RING AND A ACE CONDITI NS AND MAY (E PASSAGE O ED IS A SIMPL INS ENCOUN	at the Ions M4 Change F time. Lificati	TIME (AY DIF E AT T THE [OF DRI FER AT HIS LO DATA	lling. Tother Cation			Figure I-14

TER SI																				
EY W₽	L	OG	OF	: Т	ES	ΓB	OR	ING		6 PROJEC		nprovement	e		ATLAS 1962			IBER		B-8S
VALL	SITE								Mea	a vancy c		provement	5	STAR	т		END		SHEE	et no.
MEAD		side Co NG CON								DRILL ME	ETHOD			9/22	2/22 LOGGED I	BY	9/22/22	REVIE	WED	15 BY
DPE &		Explora							BODING		Stem Au			· · · · · · · · · · · · · · · · · · ·	HK	<u> </u>		DAS/		
DH DC		NG EQU -75	IPIVIE						8 8	i DIA. (IN.)	41.5	DEPTH (π)	GROUND ELE 1593	:ν. (π)			. Ground W F Drilling	•	π)	
0 0 0		ING ME			D		1	NOTES		00.00		001					DRILLING			
EMWI	140-1	b Hamr						Hammer	Efficienc	cy = 80.0°	% N ₆₀ ∼1	.33IN _{SPT}			I¥ AFTER I	DRI	LLING			
ERVICES/190063P4.2 -	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC						NAND CLASS					··		LAB TESTS
ENGINEERING NON-DESIGN SEI	- - 1590 -							der	nse, brov	wn, moist	t, fine to	coarse grai				-				AL WA
EEDED	_	—5 _		CAL	23								brown, intens), medium der							
TER DISTRICT/190063P4 - EMWD, AS-N	- 1585 - -	- - 		CAL	36			De	nse.											WA
LIEN TS/EASTERN MUNICIPAL WA	1580 - -	- 15 		CAL	66			- Bro	own, (Sil	LTY SAN	<u>D (SM),</u>	very dense	, moist, fine to	o coars	e grained).					
AILAS LOG REPORT - 33/23 10:53 - %D SCS1. COMDFS_ROOT UDATA/CLIENTSIESSTERN MUNICIPAL WATER DISTRICT/190063F4 - EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190063F4.2 - EMWD, GOOD HOPE & MEAD VALLEY WATER	- 	- - 20 - - -		CAL	50/6															
AS LOG REPORT -	1	TEA	5		6280 San I	River Diego,	dale S Calif	Consultan Street fornia 9212 9) 280-432	20			OF THIS E SUBSURF LOCATIOI WITH THE PRESENT	MARY APPLIE BORING AND A ACE CONDITI NS AND MAY C PASSAGE OF ED IS A SIMPL	AT THE ONS M CHANG TIME. IFICAT	TIME OF D AY DIFFER E AT THIS THE DATA ION OF TH	DRIL LOCA	LING. OTHER CATION			Figure
₹												CONDITIC	INS ENCOUNT	ERED.						I-15

LEY WATER S	L	OG	OF	- т	ES	ΤB	ORI	NG		6 PROJEC			-					IBER	B-8S
A N	SITE			•			2 · · ·		Mea	a valley S	Sewer Imp	provement	s	STAR		1962.00	00-1 END	Sł	IEET NO.
AU	River	side Co NG CON	unty	, CA						DRILL ME				9/22			9/22/22	REVIEW	16
PE & M		Explora		41							Stem Aug	ler			HK	GED BY		DAS/MI	
F	DRILLI	IG EQU		ENT						DIA. (in.)	TOTAL D	EPTH (ft)	GROUND ELI		DEPT		. GROUND V	VATER (ft)	
6000		75 ING ME	тно				N	OTES	8		41.5		1593				F DRILLING		
		b Hamr			<u>n Drop</u>)			Efficiend	<u>cy =</u> 80.0°	% N₀₀~1.3	33N _{spt}					LLING		
N SERVICES/190063P4.2 - EM	ELEVATION (ff)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG	Bro	own, (SII	LTY SAN			NAND CLAS				ontinued)		LAB TESTS
- NDJ.SCS (COMDFS_ROD NDIA) ACCIENT SIEAS IERN MUNICIPAL WATER DISTRICTI3005374 EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICEST3005374.2 - EMWD,	1565	- - - 		SPT		56													
	1560 - - 	- 35 - -		SPT	72/11"	96/11"		Ha	ard drilling	g.									
	-	- —40						(In	crease ir	n moisture	e and coa	rse mater	al).						
ρ N N	-	-		SPT	19	25		(M	ledium de	ense).									
3/3/23 10:33 - 1\SU-SUSI.COM/DFS_ROUT/DATA/CLIE	- 	- - 45 - -											RMINATED /						
AILAS LUG REPURI -	-1	TL A	5		6280 San	River Diego,	dale S [:] Califo	onsultan treet ornia 921:) 280-432	20			OF THIS E SUBSURF LOCATION WITH THE PRESENT	Mary Applie Boring and A Ace Condit NS and May (Passage o Ed IS a Simpi NS Encoun	at the Ions M Changi F time. Lificat	TIME AY DII E AT THE ION C	of Drii Ffer At This Lo Data	LING. OTHER CATION		Figure I-16

GOOD HOPE & MEAD VALLEY WATEK SI SIZE SIZE BUD BUD SAD SAD SAD SAD SAD SAD SAD SAD SAD SA																	
ΞΥ W	LO	G (OF	T F	ES	ΓB	ORI	NG		S PROJEC	T NAME Sewer Improverr	ents		ATLAS P 1962.0	ROJECT NUME	BER	B-9S
									WIC.	ad valicy d			STAF		END	SH	EET NO.
	erside		unty. PAN	, CA 1 Y						DRILL ME	THOD		9/2	2/22 LOGGED BY	9/22/22	REVIEWE	17 D BY
≫ ⊎ Baj	a Exp										Stem Auger			HK		DAS/MN	
	LING		PME	INT						Ġ DIA. (in.)	TOTAL DEPTH		ELEV. (ft)		V. GROUND W	.,	Tex 1569 00 ft
	IE-75 PLING		тно	D			N	OTES	8		41.5	1593		-	of Drilling _ F Drilling -		LIEV 1568.00 π
<u> </u>)-lb Ha	lamm	ner, S	30-ir	ו Drop			Hamm	ner Efficier	ncy = 80.09	% N ₆₀ ~1.33N _{SPT}						T
			Щ	LE	L			≥									
ELEVATION ELEVATION	DEPTH	(ff)	BULK SAMPLE	DRIVE SAMPLE	PER FOOT SWOJB	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG			CRIPTION AN					LAB TESTS
N CE			\bigotimes								DLD AXIAL-CH dense, brown,						
	-	<pre></pre>								meurun	i dense, brown,		uaise gi	aineu, roots,	angunan graven	5.	RV WA
	5)								CLAYE	Y SAND (SC), I	prown, dense,	moist, fir	e to coarse g	rained, micace	eous.	
ND, AS-NEF	_		-	CAL	40												EI
STRICT/190063P4 - EM	85 - - 1	0								Medium	ı dense.						DS
	-		-	CAL	22		9.0	112.4									WA
	1: - - - - - -	5	-	CAL	17					Trace g	ravel.						
	24 	20	-	CAL	11						increase in moi:	sture.					-
	AT	E/	5		6280	River	dale S	Consult Street Strnia 9			OF TH SUBSI LOCA	SUMMARY APP IS BORING AN JRFACE COND FIONS AND MA THE PASSAGE	D AT THE ITIONS N Y CHANC	E TIME OF DR MAY DIFFER A GE AT THIS LO	illing. T other		Figure
AILAS) 280-4			PRES	ENTED IS A SIN ITIONS ENCOU	IPLIFICA	TION OF THE	ACTUAL		I-17

ATER																			
GOOD HOPE & MEAD VALLEY WATER S	L	ЭG	OF	= т	ES	ΤB	ORI	NG		AS PROJEC		monto						IBER	B-9S
ALLE VALLE	TE		-	-			••••		Me	ead Valley S	ewer Improve	ements		STAR		1962.0	00-1 END	s	HEET NO.
EAD	Rivers	side Co	unty	, CA	۱									9/22			9/22/22		18
S DF ∞		iG CON Explora		NY						DRILL ME	Stem Auger				LOG HK	GED BY		REVIEW DAS/M	
P				ENT					BORI	NG DIA. (in.)	TOTAL DEPT	'H (ft)	ROUND EL	EV. (ft)			/. GROUND V		
	CME-		T 110					0750	8		41.5		1593						Elev 1568.00 ft
		D NG ME D Hamr			n Dron			IOTES Hamm	ner Efficie	$n cv = 80.0^{\circ}$	% N₀₀~1.33N₅						F DRILLING . ILLING		
		- Tiarm								00.0	10014 ₆₀ 1.0014g	SPI			I-∓ AI				
ERVICES/190063P4.2 -		DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG										LAB TESTS
MWD, AS-NEEDED ENGINEER	1565	- - 		CAL SPT	34	45				gray, in GRADE	ERDE TONAL tensely weath D SAND (SP water observe	ered to), dens	decompose e, wet, fine	ed, soft	to mo	oderatel	y hard; (PÓ	ORLY	
	1555 -	- - 40 -		SPT	85/12"								G TERMIN/				r		
ALA/C												Gro	undwater ob	oserved	at 25	Feet			
	1545 -	- 45 - - -																	
AILAS LOG REPORI	A	TEA	5		6280 San I	River Diego	dale S , Califo	Consulf Street Ornia 9) 280-4	2120		OF 1 SUB LOC WIT PRE	THIS BO SURFA ATION: H THE SENTE	IARY APPLIE DRING AND CE CONDIT S AND MAY PASSAGE C D IS A SIMP	at the 'Ions M Chang of Time. Lificat	TIME AY DI E AT THE ION (OF DR FFER A THIS LC DATA	lling. T other Dcation		Figure
AIL							,	,					IS ENCOUN						I-18

ΞΥW	L	OG	OF	- Т	ES	ΓB	ORI	NG										BER	B-10S
VALL	SITE			-		_		-	Iviea	a valley S	ewer im	provement	5	STAR		1962.00	00-1 END		SHEET NO.
IEAU	River:	side Co		, CA						DRILL ME				9/23		GED BY	9/23/22	DEVIE	19 WED BY
E &		Explora		IT						Hollow		laer			HK	JED DI		DAS/	
	DRILLI	NG EQL	JIPME	ENT				1		DIA. (in.)	TOTAL	DEPTH (ft)	GROUND EL		DEPT		. GROUND W	ATER (ft)
	CME- SAMPL		тно	D			N	OTES	8		41.5		1587				F DRILLING		t / Elev 1560.00 ft
אח' ר	140-ll	b Hamr	ner,	30-ir	n Drop			Hammer E	Efficienc	y = 80.0%	% N ₆₀ ∼1	.33N _{SPT}					ILLING		
EKVICES/190063P4.2 - EM	ELEVATION (ft)	DEPTH (ff)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC	5 EU 1									um grainad I		oticiky trace
- EMWU, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190003P4.2 - EMWU		- - - 5						grav	/el.								um grained, I	·	
STRICT/190063P4 - EMWD, AS-NEEDE	- 1580 - -	_		CAL	27			deco	<u>- VERD</u> ompose ned).	<u>E TONAL</u> :d, soft to	<u>-ITE (Kv</u> modera	<u>∕rt)</u> : IGNEO tely hard; (US ROCK (G POORLY GR	ADED S	2 DIOI SAND	RITE), ((SP), \	olive gray, inte very dense, m	ensely loist, fi	weathered to ne to medium
	- 	—10 - - - 		CAL	50/6				-	e, weakly									
	- 1570 -	_		CAL	50/5			Ligh	it browr	ı; (increas	se in mo	isture).							
3/2/23 10.05 - 05.05	- 	—20 - - -		CAL	50/6														
A I LAS LUG REFURI	-1	TE/	5		6280 San [River Diego,	dale S Califo	onsultants treet ornia 9212) 280-432	0			OF THIS E SUBSURF LOCATIO WITH THI PRESENT	Mary Applie Boring and J Ace Condit NS and May E Passage O Ed IS a Simp	AT THE IONS MA CHANGE OF TIME. LIFICATI	TIME AY DIF E AT THE	OF DRI FER AT THIS LO DATA	lling. Tother Cation		Figure
Ċ					'		• •					CONDITIO	NS ENCOUN	l'ERED.					I-19

SITE River DRILLI DRILLI DRILLI CME SAMPL	OG	OF	= т	FS	ΤB	ORI	NG	ATLAS PROJ								BER	B-10S
	00		-	20				Mead Valle	y Sev	wer Improveme	nts	START		1962.00	00-1 END		SHEET NO.
River	side Co	unty	, CA									9/23/			9/23/22		20
ă Baia	NG CON Explora		IY					DRILL		HOD em Auger			HK	GED BY		DAS/	
			ENT					BORING DIA. (i	n.) T	OTAL DEPTH (f) GROUND EL	EV. (ft)		H/ELEV	. GROUND W		
CME		TUO					0750	8		41.5	1587						ft / Elev 1560.00 ft
5 SAMPL	. ING ME b Hamr			n Dron			OTES Hammer	Efficiency = 80	0%	N~1 33N					F DRILLING _ ILLING		
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG		AL VERDE TON		DESC	CRIPTION AND) CLASS	SIFIC	ATION		opcoly	weathered to
- 	-		SPT	52	69		de gra ⊡ (In	AL VERDE TON composed, soft ained). (continu icrease in coars oundwater obse	to m <i>ed)</i> se ma	oderately hard; aterial).	JUS ROCK (G (POORLY GR	ADED S	SAND	(SP), v	olive gray, int /ery dense, n	ensely noist, fi	weathered to
- - - - - - - - - - - - - - - - - - -	- 30 - -		SPT	50	67												
- - 	- 35 - -		SPT	51	68												
	- 40 -		SPT	80/12"	107/12'		(S	trongly cemente	ed).								
-1545	_										RING TERMIN Groundwater o				Т		
140-I NOLEVATI	- 45 - -												. ut 21				
	TEA	5		6280 San I	River Diego	dale S , Califo	onsultar treet ornia 921) 280-433	20		OF THIS SUBSUF LOCATI WITH TI PRESEN	MMARY APPLIE BORING AND . RFACE CONDIT DNS AND MAY HE PASSAGE O ITED IS A SIMP IONS ENCOUN	at the Ions Ma Change If time. Lificati	TIME AY DIF E AT 1 THE I	OF DRI FER AT THIS LO DATA	lling. Fother Cation		Figure I-20

VTER SI																				
EY W₽	L	OG	OF	- т	ES	ΓB	ORI	١G	ATLAS PRO		• NAME ewer Improver	nent	s				ROJEC 00-1	T NUMI	BER	B-11S
	ITE								Wedd Val	ney e.			5	STAR	т	2.00	END	/00	s	HEET NO.
& MEA		side Co NG CON			<u> </u>				DRIL	L ME	THOD			9/23) BY	9/23		REVIEW	21 ED BY
10PE		Explora VG EQ U		ENT							Stem Auger	l (ft)	GROUND ELE	V. (ft)	HK DEPTH/E	ELEV	. GROI	UND W	DAS/M	
	CME-	-75 ING ME	TUO				N	DTES	8		41.5		1587		I I AT TIN	IE O	F DRIL	LING _		
Ö Ú Ö		b Hamr			n Drop				Efficiency = 8	80.0%	6 Ν ₆₀ ∼1.33Ν _{SP}	т			¥ AT EN ¥ AFTER					
2 - EM	z		Ш	LE	Г															
WATER DISTRICT/190063P4 - EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190063P4.2 - EMWD, GOOD HOPE & MEAD VALLEY WATER SI	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG						I AND CLASS							LAB TESTS
DESIGN SE		_	\bigotimes	2					. L (Qf) : SILT vel, asphalt f		ND (SM), med ents.	lium	dense, brown	, moist	, fine to n	nedi	um gra	ained, t	race	
	1585	-																		COR
		-5	X	2				VA	L VERDE TO	ONAL	.ITE (Kvt): IGI	NEO	US ROCK (Q	UARTZ	Z DIORIT	Ē), t	orown,	intens	ely	_
- NEED		-		CAL	37			wea	athered to de dium grainec	ecomp	posed, soft to r	node	erately hard;(SILTY	SAND (S	5M),	dense	, moist	, fine to	PD
VD, AS	1580	-																		
4 - EM		_																		
0063P.		_																		
ICT/19		—10																		
DISTR		_		CAL	30			(Me	edium dense	, wea	kly cemented)	•								
VATER	1575	_																		
_		_																		
		_																		
TERN 1		—15																		
S/EAS		_		CAL	74			(Ve	ery dense, inc	crease	e in moisture).									
LIENT	1570																			
ATA/C	-1570																			
		-																		
FS_R(_																		
		20		CAL	50/4			(Inc	crease in coa	arse n	naterial).									
SCST		_																		
- \\SD.	1565	-																		
10:53		_																		
ATLAS LOG REPORT 3/3/23 10:53 - \\\\SD:SCST.COMDFS_ROOT\DATA\CLIENTS\EASTERN MUNICIPA		_																		
ORT -								1			THIS	SUM	MARY APPLIE	S ONL'	Y AT THE	LOC		1		
G REP			C				nical Co dale St	onsultant reet	ts		OF TI SUBS	HIS E SURF	ORING AND A	AT THE ONS M	TIME OF	DRI R A	lling. F othe	ĒR		Figure
4S LO(TLA	3		San [Diego,	Califor	nia 9212 280-432			WITH	I THE	NS AND MAY (PASSAGE OI ED IS A SIMPL	TIME.	THE DAT	ΓA				
ATL					10104		(010)	200-402	••				NS ENCOUNT							I-21

GOOD HOPE & MEAD VALLEY WATER SI GOOD HOPE & MEAD VALLEY WATER SI																		
EY W⊅	L	OG	OF	: т	ES	T B	ORI	NG					2		ATLAS F 1962.0		IBER	B-11S
S	ITE								Iviea	u valley d	Sewer III	nprovement	5	STAR	т	END	SH	IEET NO.
D	River:	side Co NG CON	unty IPAN	, CA Y						DRILL MI	ETHOD			9/23	3/22 LOGGED BY	9/23/22	REVIEWE	22 D BY
DE &		Explora		-					DODING		Stem A			-1/ (64)	HK			N
	CME-	NG EQU .75	IPME	:NI					80RING	5 DIA. (IN.)	41.5	. DEPTH (π)	GROUND ELE 1587	=v. (π)		v. ground v of drilling	. ,	
Ö Ö Ö	AMPL	ING ME			_			IOTES										
EMWC	140-li	b Hamr			n Drop			Hammer	Efficien	cy = 80.0	% N ₆₀ ~1	.33N _{SPT}			AFTER DI	RILLING		
ERVICES/190063P4.2 -	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG						I AND CLASS					LAB TESTS
SIGN SE		-		SPT	81	108		· we	eathered	I to decor	nposed	<u>(vt)</u> : IGNE , soft to mo led). <i>(contil</i>	DUS ROCK (derately hard hued)	QUAR ; (SIL	TZ DIORITE TY SAND (S	E), brown, int M), very der	ensely ise,	
L WATER DISTRICT/190063P4 - EMWD, AS-NEEDED ENGINEEKING NG	1560	- 	-			67/6			JISI, IIITE	to medic	un gran	ea). (<i>conur</i>	iued)					
I S\EASTERN		—40 -	-	SPT	50/6	67/6												
	1545					I	<u></u>	··· 1					RMINATED /					1
- 3/3/23 10:53 - \\	1540	- 45 - -																
AILAS LOG KEPUKI -	-1	TEA	5		6280 San [River Diego,	dale S Califo	Consultan Street ornia 921	20			OF THIS E SUBSURF LOCATION WITH THE PRESENT	MARY APPLIE ORING AND A ACE CONDIT NS AND MAY PASSAGE O ED IS A SIMPL NS ENCOUN	AT THE IONS M CHANG F TIME _IFICAT	ETIME OF DR IAY DIFFER A IE AT THIS LO . THE DATA ION OF THE	ULLING. TOTHER DCATION		Figure I-22
<												SONDING			•			1 44

ATER																				
LEY WA	L	OG	OF	- T	ES	ΓB	OR	ING					-					MBER	B	8-12S
AL VAL	SITE			-				-	iviea	a valley S	sewer in	nprovement	5	STAR		962.0	00-1 END		SHEE	
AD	Rivers	side Co	ounty	, CA										9/23			9/23/22			23
& ME				IY						DRILL ME						ED BY			WED E	BY
ц Г С		Explora		INT					BORING	Hollow			GROUND ELE	-V. (ft)	HK	H/ELE\	. GROUND	DAS/		
н Г ПО	CME-								8	20.4 (11.)	41.5		1582				F DRILLING	•		/ 1543.00 ft
З Э		ING ME	тно	D			1	NOTES					1		¥ AT I	END O	F DRILLING			
ה'ח אוא	140-ll	b Hamr	ner,	<u>30-ir</u>	ו Drop			Hammer I	Efficienc	cy = 80.0°	% N ₆₀ ∼1	.33N _{SPT}			¥ AFT	ER DR	ILLING			
EKVICES/190063P4.2 - EI	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC		1 (06):				N AND CLASS			o mod		trace		LAB TESTS
	140-II NOLL(J) -1580	-								SILTY SA		/), medium	dense, brown	ı, moist	, fine t	o med	um grained	I, trace		PD RV
	-1575	—5 - -		CAL	23			YO gra	UNG W	ASH DEF ghtly mica	POSITS aceous.	<u>(Qywa)</u> : S	ilty sand, r	nedium	dense	e, mois	st, fine to co	arse		
	-1570	-		CAL	21															
		—15																		
	-1565	_		CAL	40			inte	ensely w	eathered	to deco		US ROCK (Q ft to moderate ned).							
- 3/3/23 10:53 - WSU.SUSI.CUM/DFS	-1560	20 		CAL	69/12"			(Ve	ery dense	e).										
	-1	TL/	5		6280 San [River Diego,	dale S Calif	∴] Consultant Street fornia 9212 9) 280-432	20			OF THIS I SUBSURF LOCATIO WITH THI PRESENT	IMARY APPLIE BORING AND A ACE CONDITI NS AND MAY (E PASSAGE O ED IS A SIMPL DNS ENCOUN	AT THE ONS M CHANGI F TIME. LIFICAT	TIME (AY DIFI E AT T THE D	of Dri Fer a' His Lo Data	lling. Tother Dcation			igure -23

Ľ	.OG	OF	= T	ES	ΤB	OR	ING	ATLAS PROJEC	T NAME Sewer Improveme	onte		ATLAS P 1962.0	ROJECT NUM	BER	B-12S	
SITE										1115	STAR		END	SH	EET NO.	
Rive	rside Co		, CA	\				DRILL M	ETHOD		9/23	3/22 LOGGED BY	9/23/22	REVIEWE	24	
≥ DRILL ∞ ⊔ Baia	Explora		• •						Stem Auger			HK		DAS/MN		
	ING EQU		ENT						TOTAL DEPTH (ft) GROUND ELI	EV. (ft)	DEPTH/ELE	/. GROUND W	ATER (ft)		
	E-75 Ling me	тно					NOTES	8	41.5	1582		-	of Drilling		Elev 1543.00 ft	
140-	lb Hamr			n Drop				Efficiency = 80.0	% N₀₀~1.33N₅₅т				-			
- EMV								,	00 011							
	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC				ON AND CLAS					LAB TESTS	
			CAL	50/6			. V	AL VERDE TONA tensely weathere	<u>LITE (Kvt)</u> : IGNE d to decomposed	OUS ROCK (C I, soft to moder	UART.	Z DIORITE), ard; (POOR	light brown, LY GRADED)		
Т матех полистивиона-т-техноколь-	- - -						S S	AND (ŚP), very d	ense, moist, fine	to medium gra	ined). ((continued)				
ם – ב –	30						(lr	ncrease in coarse	material).							
	-		SPT	51	68				,							
-24)															
	35 		SPT	66	88		Po A	Potassium feldspar, weakly cemented, (increased coarse material).								
	- - 40		SPT	76/12"	101/12'		⊊ Gi	roundwater obsen	ved at 39 feet.							
							<u>~_</u>			TERMINATED						
	- - 45 -								Groun	dwater observed	d at 39	Feet				
6/c									T							
	\ TE/	5		6280 San I	River Diego,	dale \$, Calif	Consultar Street Fornia 921 9) 280-43	20	OF THI SUBSU LOCAT WITH T PRESE	JMMARY APPLIE S BORING AND J RFACE CONDIT ONS AND MAY HE PASSAGE O NTED IS A SIMPI	AT THE IONS M CHANG F TIME LIFICAT	E TIME OF DR IAY DIFFER A GE AT THIS LO THE DATA FION OF THE	ILLING. T OTHER DCATION		Figure	
AIL				· - P		(,		CONDI	TIONS ENCOUN	TERED). 			I-24	

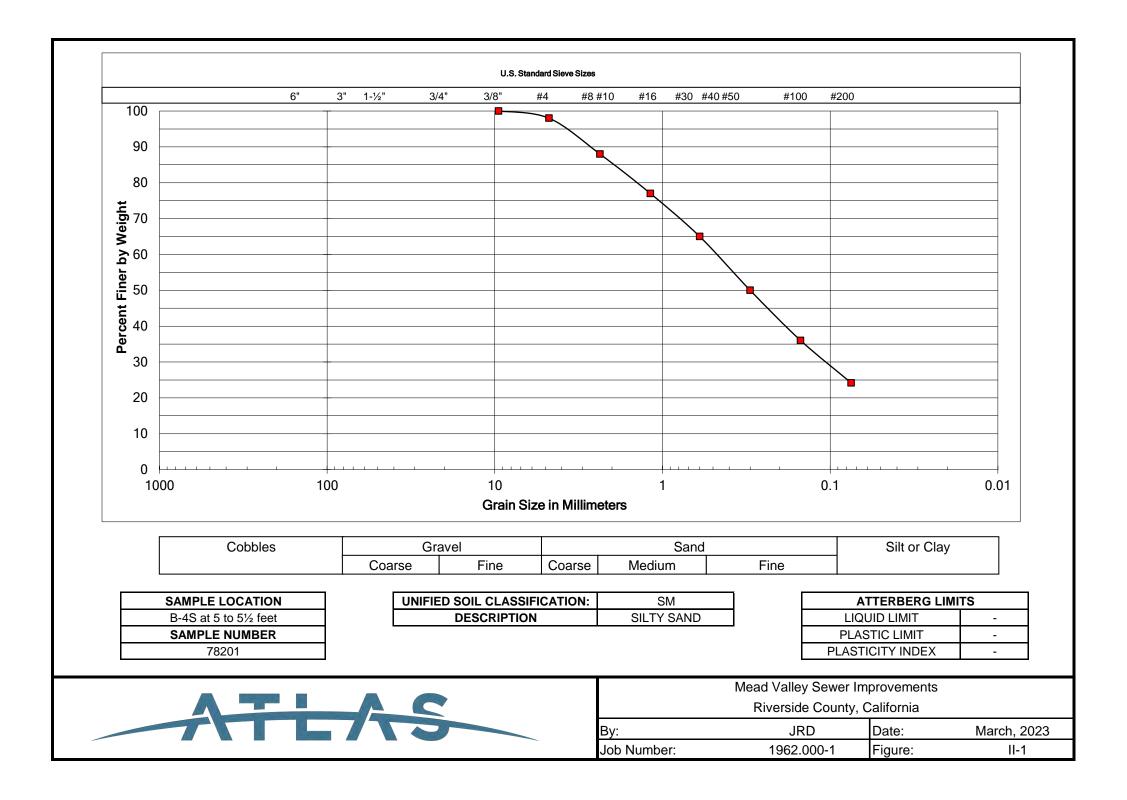
SITE SITE Rive DRILL Baja DRILL LAR SAMP	OG	OF	= T	ES	ΤB	ORI	NG		S PROJECT	NAME ewer Improvemen						BER	B-13S
		-						IVIE		ewer improvemen	.5	START		962.00	END		SHEET NO.
Rive	erside Co		, CA	\					DRILL ME			9/28/		ED BY	9/28/22	DEVIE	25 WED BY
≥ DRILL ø ⊔ Baia	Explora		4 1							Stem Auger			SD			DAS/	
	ING EQU		ENT					BORIN	G DIA. (in.)	TOTAL DEPTH (ft)	GROUND ELE		DEPTH		. GROUND WA	ATER (
	-55 LING ME	тно				N	IOTES	8		40.5	1577				F DRILLING		
	-lb Hamr			n Drop				er Efficier	ncy = 80.0%	% N ₆₀ ∼1.33N _{SPT}					LLING		
	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG	<u>FILL (Q</u>	<u>f)</u> : SILTY SAND (DESCRIPTIO					se grai	ned.
	- 5- - -								YOUNG WASH DEPOSITS (Qywa) : CLAYEY SAND (SC), medium dense, pale brown, moist, fine to medium grained.								
	-)- - - 10		CAL			8.7	119.9		Young WASH DEPOSITS (Qywa): CLAYEY SAND (SC), medium dense, pale brown, moist, fine to medium grained.								
	- 5- - - 15			79/9"					Very der	nse.							
1560	_		CAL	50/6						se in fine content.							
	- 20 - 5-		CAL	50/6					weather	RDE TONALITE (ed to decomposed oarse grained).	<u>ĸvt)</u> : IGNEOL , soft to mode	JS ROC rately ha	:К (QL ard; (С	JARTZ	Diorite), Iiq Y Sand (SC)	ght bro	own, intensely dense, moist,
	_								Yellowis	h brown to dark br	own.						
	A TE/	5		6280 San I	River Diego,	dale S Califo	Consulf Street Ornia 9) 280-4	2120		OF THIS SUBSURF LOCATIO WITH TH	IMARY APPLIE BORING AND A FACE CONDITI NS AND MAY (E PASSAGE OI FED IS A SIMPL	AT THE ONS MA CHANGE F TIME.	TIME (AY DIFI E AT TI THE D	DF DRII FER AT HIS LO DATA	LING. OTHER CATION		Figure
						,010	, _00-				ONS ENCOUN						I-25

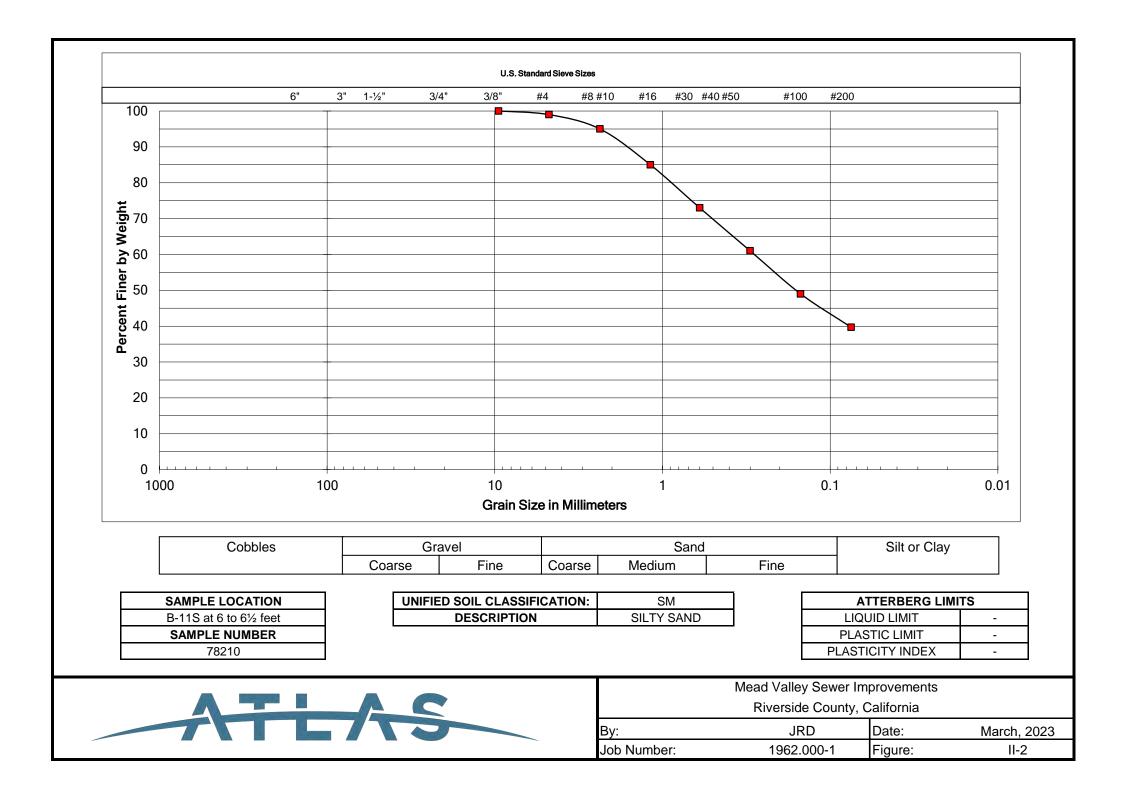
ATEK																	
GOOD HOPE & MEAD VALLEY WATER'S SITE BALL BALL SAME SAME	OG	OF	= T	ES	ΤB	ORI	NG		AS PROJECT	T NAME Sewer Improveme	ento					BER	B-13S
SITE								IVIE	ad valley S	ewer improveme	nts	START		962.00	END		SHEET NO.
	erside Co								DRILL ME			9/28/	/22 LOGGE		9/28/22	PEVIE	26 WED BY
≥ DRILL ∞ ⊔ Baja	a Explora		• 1							Stem Auger			SD			DAS/	
	ING EQU		ENT						IG DIA. (in.)	TOTAL DEPTH (. GROUND W	•	ft)
	2-55 P ling me	тнс	D			N	OTES	8		40.5	1577				F DRILLING		
140	-lb Hami	ner,	30-iı	n Drop			Hamm	ner Efficie	ncy = 80.0%	% N ₆₀ ~1.33N _{SPT}					ILLING		
	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	2 60	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG		ERDE TONALITE	DESCRIPTIC						
иоперия – – – – – – – – – – – – – – – – – – –	-)- -		SPT	50/6	67/6				weathered to decomposed, soft to moderately hard; (CLAYEY SAND (SC), very dense, moist, fine to coarse grained). (continued)								
AL WALEK DISTRICTING005744 - EMWD, AS-NEEDED ENGINEEKING NON-DESIGN SEKVICES/190063742.2. EMWD, 101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 		CAL	50/6													
	35 - - - - - 40		SPT,														
	- - 45 -										BORING T Groundwate						
	A TE/	15	1	6280 San I	River Diego,	dale S Califo	Consulf treet ornia 9) 280-4	2120		OF THI SUBSU LOCAT WITH T PRESE	JMMARY APPLIE S BORING AND RFACE CONDIT ONS AND MAY HE PASSAGE C NTED IS A SIMP 10NS ENCOUN	AT THE IONS MA CHANGE OF TIME. PLIFICATI	TIME C AY DIFF E AT TH THE D,	of Dri Fer At His Lo Ata	lling. Fother Cation		Figure I-26

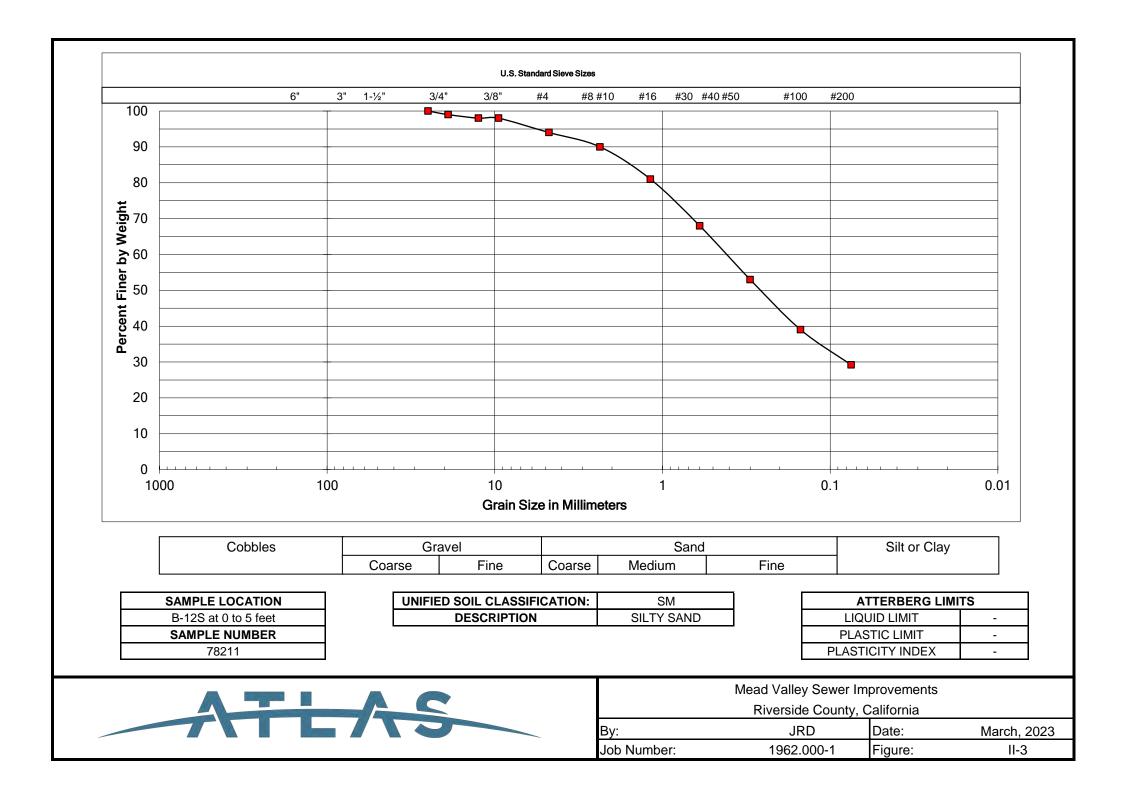
TER S																			
MEAD VALLEY WA		OG	OF	- т	FS	T R	ORI	NG		PROJEC							ROJECT NUM	BER	B-14S
ALLE		00		-					Mead	d Valley S	Sewer In	nprovemen	ts	STAR		1962.0	00-1 END		SHEET NO.
AD V	Rivers	side Co	unty	, CA										9/29			9/29/22		27
οŏ				IY						DRILL M						GED BY	ŕ		WED BY
Щ		Explora		=NT					BORING	Hollow	Stem A	uger DEPTH (ft)	GROUND E	LEV. (ft)	SD DEP	TH/ELE	/. GROUND W	DAS	
H QO	CME-								8	,	40.5		1641	,					ft / Elev 1612.00 ft
00		ING ME						IOTES			•						F DRILLING		
DWM	140-1	b Hamr	ner,		ר Drop			Hammer E	Efficienc	cy = 80.0	% N ₆₀ ∼1	.33N _{SPT}			I¶ AF	TER DR	ILLING		
PAL WATER DISTRICT/190063P4 - EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES\190063P4.2 - EMWD,	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	Z 60	GRAPHIC LOG		DESCRIPTION AND CLASSIFICATION										
N-DESIGN SI	-1640	_	\bigotimes																
EERING NO		_	X	*				VERY OLD AXIAL-CHANNEL DEPOSITS (Qvoa) CLAYEY SAND (SC), dense, reddish brown, moist, fine to medium grained.											
NGIN		_	\bigotimes	*				 VAL VERDE TONALITE (Kvt): IGNEOUS ROCK (QUARTZ DIORITE), dark gravish brown, intensely weathered to decomposed, soft to moderately hard; (POORLY GRADED SAND (SP), very dense, moist, fine 											
		—5		CAL	50/6					rained).	ipeeea, t		oratory riara,	(10011		U LD LD	o, and (or),	iony a	
	-1635	-			00/0														
O, AS		_																	
IMME																			
P4 - E	-	_																	
90063		_																	
CT/15		10		CAL	50/0														
STRI	1000				50/6														
ER D	-1630	_																	
WAT		_																	
		_																	
UNIC		_																	
RNM																			
ASTE		—15		CAL	50/6														
TS/E/	-1625	_																	
		_																	
ATA/C								3											
	-	_																	
- 3/3/23 10:54 - \\SD.SCST.COM\DFS_ROOT\DATA\CLIENTS\EASTERN MUNICI		_																	
NDFS		20			50/0														
CON	1000			CAL	50/6														
SCST	-1620	_																	
\\SD.		-																	
:54 -		-																	
/23 1(_	_																	
- 3/3																			
DRT-			I			I	<u></u>					THIS SUM	MARY APPL	IES ONI '	Y AT ⁻	THE LO	CATION		
REP(Consultant	s			OF THIS	BORING AND) AT THE	TIME	OF DR	ILLING.		Figure
LOG		TEA	5	-			dale S Califo	street ornia 9212	0			LOCATIO	NS AND MAY	CHANG	EAT	THIS LC			-
ATLAS LOG REPORT) 280-432				PRESEN	TED IS A SIMI	PLIFICAT	ION C	OF THE	ACTUAL		I-27
∢																			/

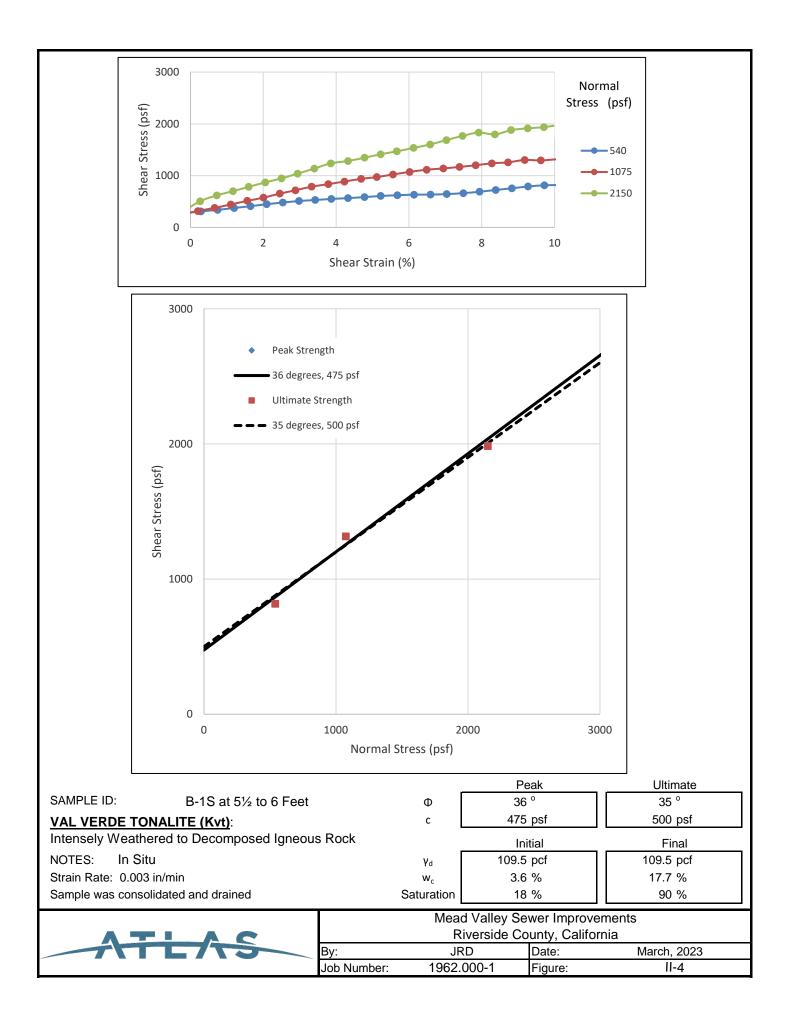
4	OG		= т	FS	TR	ORI	NG		PROJEC							ROJECT NUM	BER	B-14S
SITE	00		-		ים ו		NO	Mead	d Valley S	Sewer Impr	ovemen	S	STAR		962.00	0-1 END		SHEET NO.
Rive	side Co	ountv	. CA										9/29			9/29/22		28
	NG CON	IPAN							DRILL ME	THOD			1 0.00		ED BY		REVIE	WED BY
Baja	Explora							DODING		Stem Auge				SD			DAS/	
	NG EQU	IPINI	ENI					8	DIA. (IN.)	40.5	ΕΡΙΗ (π)	GROUND EL 1641	Εν. (π)			. Ground W F drilling	•	π) ft / Elev 1612.00 ft
	-75 LING ME	тно	D			N	OTES	0		40.5		1041				DRILLING		
	lb Hamr	ner,	30-ir	ו Drop	1		Hamme	er Efficienc	y = 80.0°	% N₀₀~1.33	3N _{spt}					LLING		
ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE		BLOWS PER FOOT	Z 2 67/3	GRAPHIC LOG	<u> </u>	/AL VERD	E TONA	LITE (Kvt):	: IGNEC	RIPTION AND	QUARTZ		RITE), c	lark grayish SAND (SP).	brown, verv de	intensely ense, moist, fine
1615 	- - 30		SPT	50/6			tr (o coarse g Trace fines	rained). <i>(</i> s).	posed, soft continued) ed at 29 fe		erately hard; (POORL	Y GR	ADED	SAND (SP),	very de	ense, moist, fine
	-		SPT															
24 	-40		SPT	50/4							POR			AT 401		.		
	- - 45											RING TERMIN				I		
	\ TE A	5		6280 San I	River Diego	dale S , Califo	Consulta street ornia 92) 280-4:	120		C S L P	DF THIS I SUBSURF OCATIO VITH TH PRESENT	Imary Applie Boring and Face Condit NS and May E Passage C Fed IS a Simp DNS Encoun	at the 'Ions M Changi of time. Lificat	TIME (AY DIFI E AT T THE D	DF DRII FER AT HIS LO ATA	LING. OTHER CATION		Figure I-28

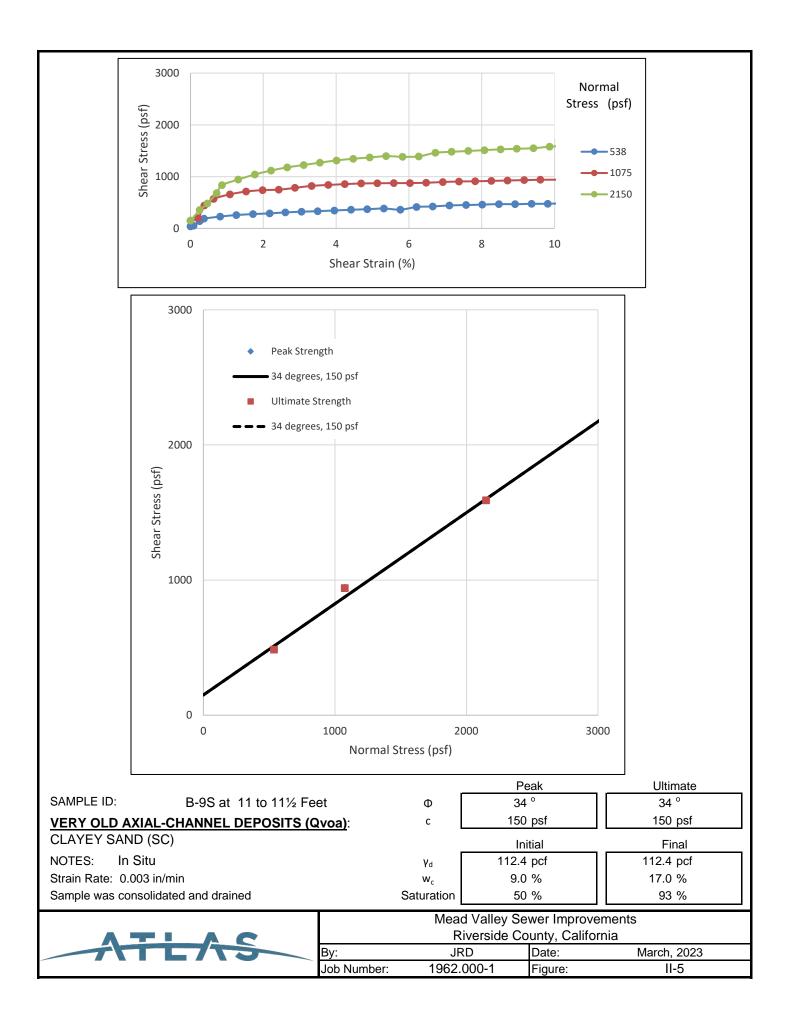
SITE SITE River DRILLI DRILLI CME SAMPL																
	OG	OF	= т	ES	ΤB	ORI	NG		LAS PROJEC	F NAME ewer Improvem	ents		ATLAS P 1962.0	ROJECT NUMI 00-1	BER	B-15S
									,	•		STAR	π	END 9/29/22	SH	EET NO.
	side Co NG CON		/, CA IY	\					DRILL ME	THOD		9/29	LOGGED BY	0/20/22	REVIEWE	29 D BY
Baja	Explora NG EQU		ENT					BOF		Stem Auger	ft) GROUND ELE	-V. (ft)	SD DEPTH/ELEY	/. GROUND W	DAS/MN	Л
	-75							8		40.5	1641				• •	Elev 1613.00 ft
SAMPL	.ING ME b Hamr			n Dron			IOTES	or Effic	iency - 80.0º	% N ₆₀ ∼1.33N _{SPT}			T AT END O T AFTER DR			
M 140-1										0 14 ₆₀ - 1.00 14 _{SPT}				ILLING		
140-1 (1) 140-1 (1) 140-1 140-	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG			RIPTION AND					LAB TESTS
		\bigotimes	>							f) : CLAYEY SA grained.	ND (SC), mediu	m den	se, reddish bi	rown, moist, f	ine to	
9,5 	–	\bigotimes	>													
	-	\bigotimes														AL WA
	F	\bigotimes	2													
	_	\bigotimes	>													
Е - Е	-5			50/0												
	-		CAL	50/6					VAL VE brownis	RDE TONALIT	(Kvt): IGNEO	JS RO	CK (QUARTZ	Z DIORITE), noderatelv ha	ırd:	1
L, AS	_								(POORI	LY GRADED SA	ND (SP), very d	ense, i	moist, fine to	coarse graine	d).	
EMW	_															
03P4 -																
190061/	_															
- 12	-10		SPT	50/6	67/6	13.8	116.4									
2 	-															
WAIE -	-															
- L	_															
	_															
2 Z Y	45															
EAS	15		CAL	50/6												
2 – 1625 z	-															
	-															
	-															
002 -	-															
	-20															
×000			CAL	50/5												
	_															
	-															
10:54	-															
3/3/2:	-															
1								·····		T. 110. 0						
							Consul	tants		OF TH	JMMARY APPLIE S BORING AND A RFACE CONDITI	AT THE	TIME OF DR	ILLING.		Figure
	TEA	5	_			dale S Califo	treet ornia 9	2120		LOCAT	IONS AND MAY (THE PASSAGE O	CHANG	E AT THIS LC	CATION		
VILAS) 280-			PRESE	NTED IS A SIMPL	IFICAT	ION OF THE	ACTUAL		I-29
(<u> </u>												,D				• <i>• • •</i>


SITE Rive DRILL Baja DRILL CMI SAMF	OG	OF	- Т	ES	ΓB	ORI	NG		AS PROJECT		onto					IBER	B-15S
SITE			•		_			Me	au valley S	ewer Improven	ents	STAR		1962.00	00-1 END	SI	HEET NO.
Rive	erside Co	ounty	, CA							7100		9/29			9/29/22		30
	ING CON Explora		IY							Stem Auger			SD	GED BY		REVIEW DAS/M	
	ING EQU		ENT					BORIN			(ft) GROUND EL	.EV. (ft)		TH/ELEV	. GROUND W		IVI
CM	E-75 P LING ME	TUO					0750	8		40.5	1641						Elev 1613.00 ft
	-lb Hamr			n Drop			I OTES Hamm	er Efficie	$n_{\rm CV} = 80.09$	% N ₆₀ ~1.33N _{SPT}					DRILLING		
ELEVATION (ft)		BULK SAMPLE	A DRIVE SAMPLE	906 PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG	brownis	RDE TONALII h gray, intensel	CRIPTION ANE <u>E (Kvt)</u> : IGNEC y weathered to d	OUS ROO	SIFICA	ATION QUARTZ	DIORITE), noderately h		LAB TESTS
	- - 30		SPT	50/4				<u> </u> 	 (POORLY GRADED SAND (SP), very dense, moist, fine to coarse grained). 								
	- 35 5- - - - - 40		SPT						(SILTY SAND (SM), very dense, wet, fine to medium grained).								
-160	n–							[••]••]••[B					-		
- - - - - - - - - - - - - - - - - - -	- - 45										Groundwater o	bserved	at 28	Feet			
	Atlas Technical Consultants 6280 Riverdale Street San Diego, California 92120 Telephone: (619) 280-4321										SUMMARY APPLI IS BORING AND JRFACE CONDI FIONS AND MAY THE PASSAGE (ENTED IS A SIMF ITIONS ENCOUP	AT THE TIONS M CHANG OF TIME. PLIFICAT	TIME AY DIF E AT THE ION O	OF DRI FFER A THIS LC DATA	lling. Fother Cation		Figure I-30
<																	100


APPENDIX II LABORATORY TESTING


Laboratory tests were performed to provide geotechnical parameters for engineering analyses. The following tests were conducted:


- **CLASSIFICATION:** Field classifications were verified in the laboratory by visual examination. The final soil classifications are in accordance with the Unified Soil Classification System.
- IN SITU MOISTURE AND DENSITY: The in-situ moisture content and dry unit weight were evaluated on samples collected from the borings. The test results are presented on the boring logs in Appendix I.
- **PARTICLE-SIZE DISTRIBUTION:** The particle-size distribution was evaluated on soil samples in accordance with ASTM D6913.
- **CORROSIVITY:** Corrosivity tests were performed on soil samples. The pH and minimum resistivity were evaluated in general accordance with California Test 643. The soluble sulfate content was evaluated in accordance with California Test 417. The total chloride ion content was evaluated in accordance with California Test 422.
- **PERCENT FINDER THAN #200:** This test was performed on soil samples in accordance with ASTM D1140.
- **DIRECT SHEAR:** This test was performed on soil samples in accordance with ASTM D3080. The shear stress was applied to inundated samples at a constant rate of strain of 0.003 inch per minute.
- **EXPANSION INDEX:** This test was performed on soil samples in accordance with ASTM D4289.
- **ATTERBERG LIMITS:** The Atterberg limits were evaluated on a selected soil sample in accordance with ASTM D4318.
- **R-VALUE:** This test was performed on soil samples in accordance with Caltrans Test Method 301.
- **UNCONFINED COMPRESSIVE STRENGTH:** This test was performed on intact rock samples in accordance with ASTM D7012.


Soil and rock samples not tested are stored in our laboratory for future reference and analysis, if needed. Unless notified to the contrary, all samples will be disposed of 30 days from the date of this report.

RESISTIVITY, pH, SOLUBLE CHLORIDE and SOLUBLE SULFATE pH & Resistivity (Cal 643, ASTM G51) , Soluble Chlorides (Cal 422) , Soluble Sulfate (Cal 417)

SAMPLE ID	рН	RESISTIVITY (Ω-CM)	CHLORIDE (%)	SULFATE (%)
B-11S at 0 to 5 feet	7.99	1250	0.005	0.014

		EXPANSION INDEX (ASTM D4289)	
SAMPLE ID	EXPANSION INDEX	EXPANSION POTENTIAL	SOIL TYPE (USCS)
B-3S at 0 to 5 feet	18	Very Low	CLAYEY SAND (SC)
B-9S at 6 to 61/2 feet	38	Low	CLAYEY SAND (SC)

Expansion Index	Expansion Potential
1-20	Very Low
21-50	Low
51-90	Medium
91-130	High
Above 130	Very High

Percent Passing No. 200 and No. 4 ASTM D1140

SAMPLE ID	PASSING NO. 200 (%)	PASSING NO. 4 (%)	SOIL TYPE (USCS)
B-1S at 51/2 to 6 Feet	7.1	100	Poorly Graded SAND with SILT (SP-SM)
B-3S at 0 to 5 Feet	49.5	100	CLAYEY SAND (SC)
B-5S at 5 to 51/2 Feet	45.9	100	CLAYEY SAND (SC)
B-7S at 11 to 111/2 Feet	31.9	100	SILTY SAND (SM)
B-8S at 0 to 5 Feet	33.8	100	CLAYEY SAND (SC)
B-8S at 11 to 111/2 Feet	40.9	100	CLAYEY SAND (SC)
B-9S at 0 to 5 Feet	36.7	100	SILTY SAND (SM)
B-9S at 11 to 111/2 Feet	32.2	100	CLAYEY SAND (SC)
B-15S at 0 to 5 Feet	40.3	100	CLAYEY SAND (SC)

	ATTERBERG LIMITS (ASTM D4318)											
SAMPLE ID	LIQUID LIMIT	PLASTIC LIMIT	PLASTIC INDEX	SOIL TYPE (USCS)								
B-3S at 0 to 5 feet	27	17	10	CLAYEY SAND (SC)								
B-8S at 0 to 5 feet	42	15	27	CLAYEY SAND (SC)								
B-15S at 0 to 5 Feet	33	15	18	CLAYEY SAND (SC)								

	R-Value (CTM 301)	
SAMPLE ID	R-VALUE	SOIL TYPE (USCS)
B-3S at 0 to 5 feet	13	CLAYEY SAND (SC)
B-9S at 0 to 5 feet	24	SILTY SAND (SM)
B-12S at 0 to 5 feet	44	SILTY SAND (SM)

UNCONFINED COMPRESSIVE STRENGTH

(ASTM D7012)			
SAMPLE ID UNCONFINED COMPRESSIVE STRENGTH (PSI)		ROCK DESCRIPTION	
SPECIMEN 1	SPECIMEN 2	AVERAGE	ROCK DESCRIPTION
2106	4037	3071	VAL VERDE TONALIATE (Kvt)
	SPECIMEN 1	SPECIMEN 1 SPECIMEN 2	UNCONFINED COMPRESSIVE STRENGTH (PSI) SPECIMEN 1 SPECIMEN 2 AVERAGE

Mead Valley Sewer Improvements			
Riverside County, California			
By:	JRD	Date:	March, 2023
Job Number:	1962.000-1	Figure:	II-6

APPENDIX III SEISMIC REFRACTION STUDY

Atlas performed a seismic refraction study to develop subsurface velocity profiles to assess depth of bedrock and apparent rippability of the subsurface materials on January 3rd and 4th, 2023. The seismic refraction study is presented in this appendix.

SEISMIC REFRACTION STUDY EASTERN MUNICIPAL WATER DISTRICT GOOD HOPE AND MEAD VALLEY WATER PROJECT

Riverside, California

PREPARED FOR:

Mr. Nate Olivas Eastern Municipal Water District 2270 Trumble Road Perris, CA 92570

PREPARED BY:

Atlas Technical Consultants LLC 6280 Riverdale Street San Diego, CA 92120

6280 Riverdale Street San Diego, CA 92120 (877) 215-4321 | oneatlas.com

January 31, 2023

Atlas No. 1962

MR. NATE OLIVAS EASTERN MUNICIPAL WATER DISTRICT 2270 TRUMBLE ROAD PERRIS, CA 92570

Subject: Eastern Municipal Water District Good Hope and Mead Valley Water Project Riverside, California

Dear Mr. Olivas:

In accordance with your authorization, Atlas has performed a seismic refraction study pertaining to the subject project located in Riverside County, California. Specifically, our evaluation consisted of performing six seismic P-wave refraction traverses at preselected locations. The purpose of our evaluation was to develop subsurface velocity profiles of the study areas in order to assess the depth to bedrock and apparent rippability of the subsurface materials. Our field services were conducted on January 3rd and 4th, 2022. This data report presents our methodology, equipment used, analysis, and results.

We appreciate the opportunity to be of service on this project. Should you have any questions related to this report, please contact the undersigned at your convenience.

Respectfully submitted, Atlas Technical Consultants LLC

Paul W. Gresoro Senior Staff Geophysicist

PWG:SL:PFL:ds Distribution: olivasn@emwd.org

No. 1043 Exp. 1/31/2024 OF CAL

Patrick F. Lehrmann, P.G., P.Gp. 1043 Principal Geologist/Geophysicist

CONTENTS

1.	INTRODUCTION	.1
2.	SCOPE OF SERVICES	.1
3.	SITE AND PROJECT DESCRIPTION	.1
4.	STUDY METHODOLOGY	.1
5.	DATA ANALYSIS	.3
6.	RESULTS AND CONCLUSIONS	.3
7.	LIMITATIONS	.4
8.	SELECTED REFERENCES	.4

TABLE

Table 1 – Rippability Classification	
--------------------------------------	--

FIGURES

Figure 1a	Site Location Map, SL-1, SL-2 and SL-3
Figure 1b	Site Location Map, SL-4, SL-5 and SL-6
Figure 2a	Seismic Line Location Map, SL-1
Figure 2b	Seismic Line Location Map, SL-2
Figure 2c	Seismic Line Location Map, SL-3
Figure 2d	Seismic Line Location Map, SL-4
Figure 2e	Seismic Line Location Map, SL-5
Figure 2f	Seismic Line Location Map, SL-6
Figure 3a	Site Photographs, SL-1, SL-2, and SL-3
Figure 3b	Site Photographs, SL-4, SL-5, and SL-6
Figure 4a	P-Wave Profile, SL-1
Figure 4b	P-Wave Profile, SL-2
Figure 4c	P-Wave Profile, SL-3
Figure 4d	P-Wave Profile, SL-4
Figure 4e	P-Wave Profile, SL-5
Figure 4f	P-Wave Profile, SL-6

1. INTRODUCTION

In accordance with your authorization, Atlas has performed a seismic refraction study pertaining to the subject project located in Riverside County, California. Specifically, our evaluation consisted of performing six seismic P-wave refraction traverses at preselected locations. The purpose of our evaluation was to develop subsurface velocity profiles of the study areas in order to assess the depth to bedrock and apparent rippability of the subsurface materials. Our field services were conducted on January 3rd and 4th, 2023. This data report presents our methodology, equipment used, analysis, and results.

2. SCOPE OF SERVICES

Our scope of services included:

- Performance of six seismic P-wave refraction traverses at the project site.
- Compilation and analysis of the data collected.
- Preparation of this data report presenting our results and conclusions.

3. SITE AND PROJECT DESCRIPTION

The project site was separated into two general areas, each containing three seismic traverses. SL-1 through SL-3 were located approximately 2 miles west of Interstate 215 adjacent to Cajalco Road in Mead Valley, California (Figure 1a). SL-4 through SL-6 were located within a residential area approximately 0.5 mile west of Highway 74 in Perris, California (Figure 1b). The seismic traverses were conducted in the study area locations selected by a representative from your office. The traverses were conducted in areas of minimal topographic relief. Figures 2a through 2f and Figures 3a and 3b show the seismic line locations and depict the general site conditions, respectively. Based on our discussions with you, it is our understanding that your office requested this study in advance of trenching activities for proposed pipeline alignments for the subject project. We also understand that the results of our study may be used in the formulation of design and construction parameters for the project.

4. STUDY METHODOLOGY

Six seismic P-wave (compression wave) refraction studies were conducted at the project sites to develop subsurface velocity profiles of the areas studied, and to assess the depth to bedrock and apparent rippability of the subsurface materials. The seismic refraction method uses first-arrival times of refracted seismic waves to estimate the thicknesses and seismic velocities of subsurface layers. Seismic P-waves generated at the surface, using a hammer and plate, are refracted at boundaries separating materials of contrasting velocities. These refracted seismic waves are then detected by a series of surface vertical component 14-Hz geophones and recorded with a 24-channel Geometrics Geode seismograph. The travel times of the seismic P-waves are used in conjunction with the shot-to-geophone distances to obtain thickness and velocity information on the subsurface materials.

Geophones were placed at intervals of 5 feet for SL-1 through SL-6. Profile lengths include the two innermost off-end shots for total profile lengths of 125 feet. The general locations and lengths of the lines were determined by surface conditions, site access, depth of investigation, and you and your office. Shot points (signal-generation locations) were conducted along the lines at the ends, midpoint, and intermediate points between the ends of the midpoint.

In general, classical seismic refraction theory requires that subsurface velocities increase with depth (generalized reciprocal method (GRM) and time-intercept modeling). In classical analysis methods a layer having a velocity lower than that of the layer above will not generally be detectable by the seismic refraction method and, therefore, could lead to errors in the depth calculations of subsequent layers. In addition, lateral variations in velocity such as those caused by core stones, intrusions, or boulders can also result in the misinterpretation of the subsurface conditions. However, application of seismic tomography methods, as was performed for this project by Atlas, produces velocity models which, in general, are not subject to this limitation. However, even the application of seismic tomography analysis does have certain limitations regarding vertical and horizontal resolution. When a velocity anomaly target is of similar scale length to the seismic wavelet (or smaller), then diffraction behavior dominates because scattering is governing the loci of the wavefronts. For travel time analysis a target feature must be at a scale versus its depth that is detectable relative to the scale length of the seismic wavelet we produce and receive. There is a general limit to what scale of feature seismic tomography methods can detect regarding relatively small velocity anomaly features, related to both source and to medium velocities, and travel time uncertainties. In effect, some relatively smaller scale features including "thin" velocity inversion layers or voids, and some types of lateral and vertical velocity variations caused by core stones and intrusions might not be detected in our results. In general, the effective depth of evaluation for a seismic refraction traverse is approximately one third to one-fifth of the length of the spread.

Generally, the seismic P-wave velocity of a material can be correlated to rippability (see Table 1 below), or to some degree "hardness." Table 1 is based on published information from the Caterpillar Performance Handbook (Caterpillar, 2018), as well as our experience with similar materials, and assumes that a Caterpillar D-9 dozer ripping with a single shank is used. We emphasize that the cutoffs in this classification scheme are approximate and that rock characteristic, such as fracture spacing and orientation, play a significant role in determining rock quality or rippability. The rippability of a mass is also dependent on the excavation equipment used and the skill and experience of the equipment operator.

For trenching operations, the rippability values should be scaled downward. For example, velocities as low as 3,500 feet/second may indicate difficult ripping during trenching operations. In addition, the presence of boulders, which can be troublesome in narrow trenching operations, should be anticipated.

Seismic P-wave Velocity	Rippability
0 to 2,000 feet/second	Easy
2,000 to 4,000 feet/second	Moderate
4,000 to 5,500 feet/second	Difficult, Possible Blasting
5,500 to 7,000 feet/second	Very Difficult, Probable Blasting
Greater than 7,000 feet/second	Blasting Generally Required

Table 1 – Rippability Classification

It should be noted that the rippability cutoffs presented in Table 1 are slightly more conservative than those published in the Caterpillar Performance Handbook. Accordingly, the above classification scheme should be used with discretion, and contractors should not be relieved of making their own independent evaluation of the rippability of the on-site materials prior to submitting their bids.

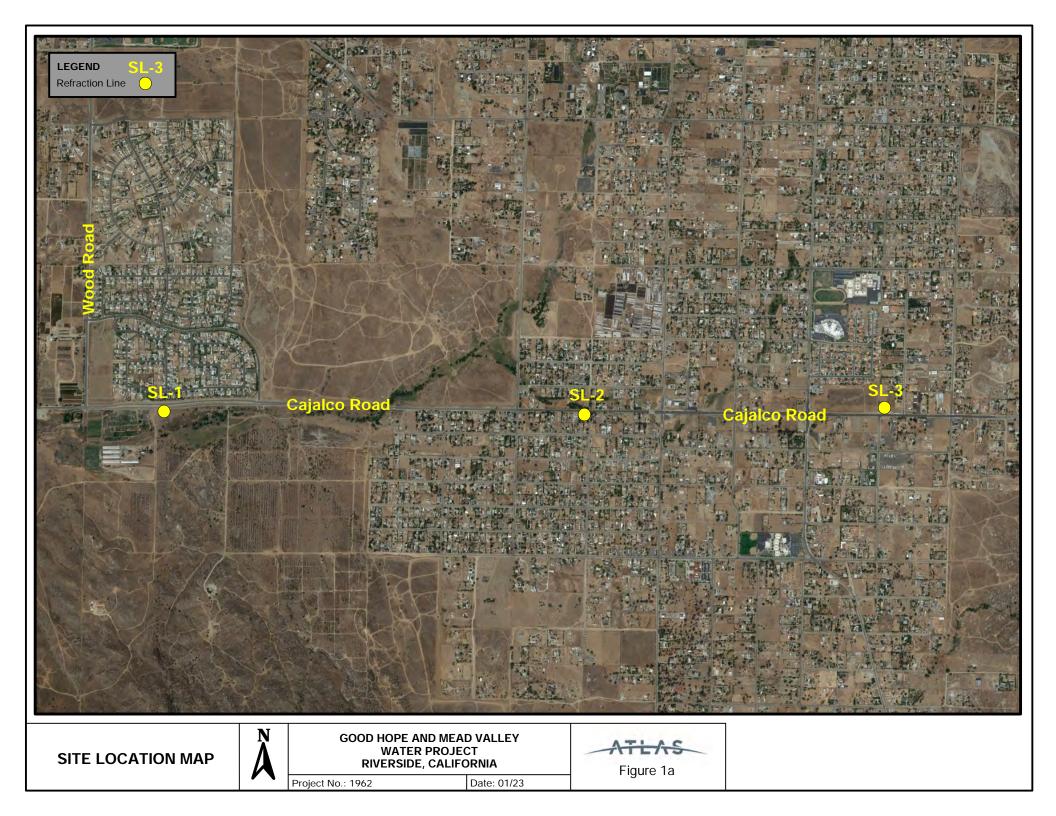
5. DATA ANALYSIS

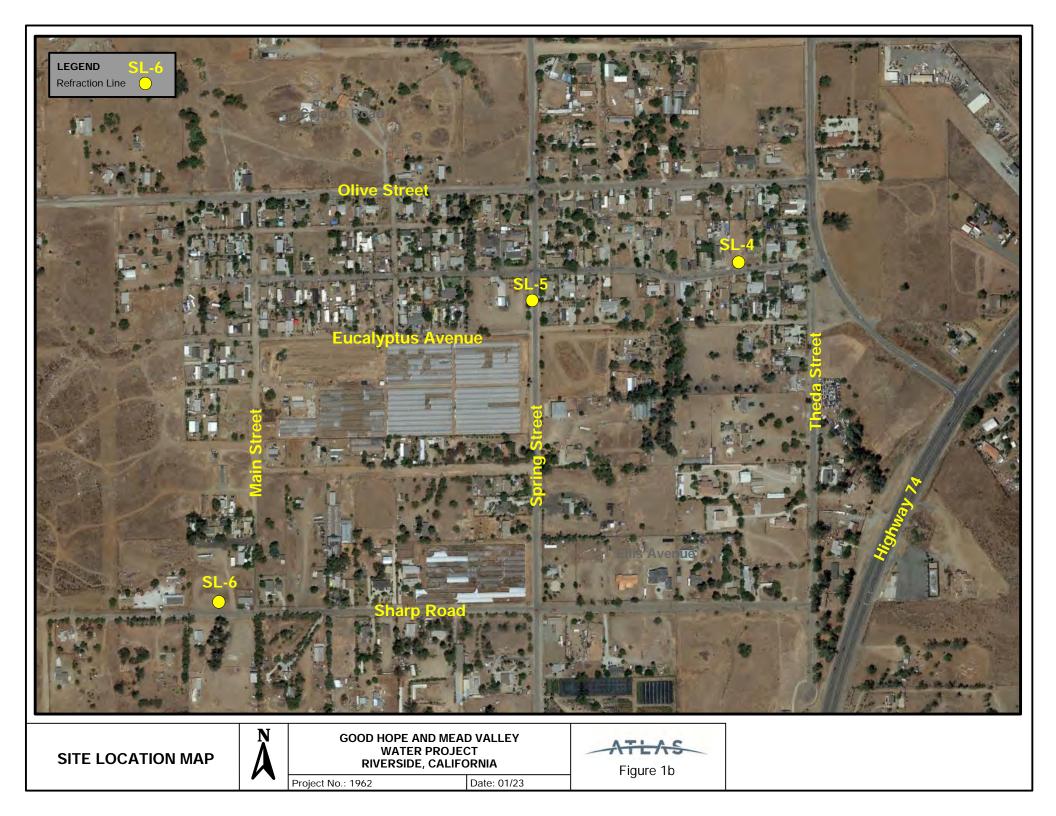
The collected data were processed using SIPwin (Rimrock Geophysics, 2003), a seismic interpretation program, and analyzed using Rayfract® Version 4.02 (Intelligent Resources Inc., 2022) which employs wave path analysis. Rayfract first provides forward modeling of refraction, transmission, and diffraction and then back-projects travel-time residuals along wave paths also known as Fresnel volumes instead of conventional analysis by rays. This increases the numerical robustness of the inversion. A smooth minimum-structure one dimensional (1-D) starting velocitydepth profile model is determined automatically directly from the seismic travel-time data first arrival picks and elevation data to produce subsurface velocities by horizontally averaging via the Delta t-V method. The Delta t-V method is based on common mid-point sorted travel times and assumes multiple horizontal layers with constant interior velocity gradients (Rohdewald 2007; Gebrande 1985). Modeled seismic rays follow circular arcs inside each modeled layer. The Delta t-V starting model is then refined with 2-D Wavepath Eikonal Traveltime (WET) inversion method (Schuster, 1993). The resulting 2-D WET velocity model provides a 2-D tomographic image of the P-wave velocities which can be used to estimate subsurface geologic conditions. Both vertical and lateral velocity information is contained in the tomography model. Changes in layer velocity are generally revealed as gradients rather than discrete contacts, which typically are more representative of actual conditions.

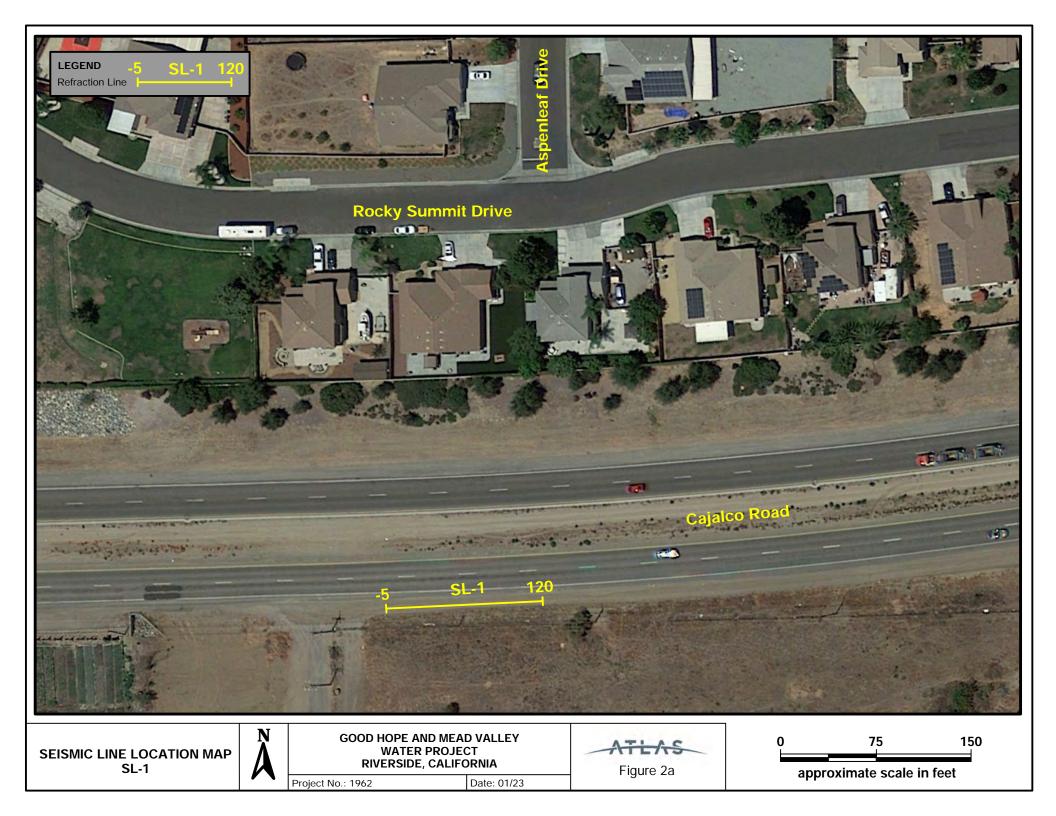
6. **RESULTS AND CONCLUSIONS**

As previously indicated, six seismic traverses were conducted as part of our study and Figures 4a through 4f present the velocity models generated from our analysis. Based on the results, it appears that the study area is generally underlain by low velocity materials in the near subsurface and higher velocity material at depth. Distinct vertical and lateral velocity variations are evident in the models. Moreover, the degree of bedrock weathering and the depth to bedrock appears to be highly variable across the study areas. In addition, remnant boulders appear to be present in the subsurface in some areas.

Based on the refraction results, variability in the excavatability (including depth of rippability) of the subsurface materials may be expected across the project area. Furthermore, blasting may be required depending on the excavation, depth, location, equipment used, and desired rate of production. In addition, oversized materials should be expected. A contractor with excavation experience in similarly difficult conditions should be consulted for expert advice on excavation methodology, equipment, and production rate.

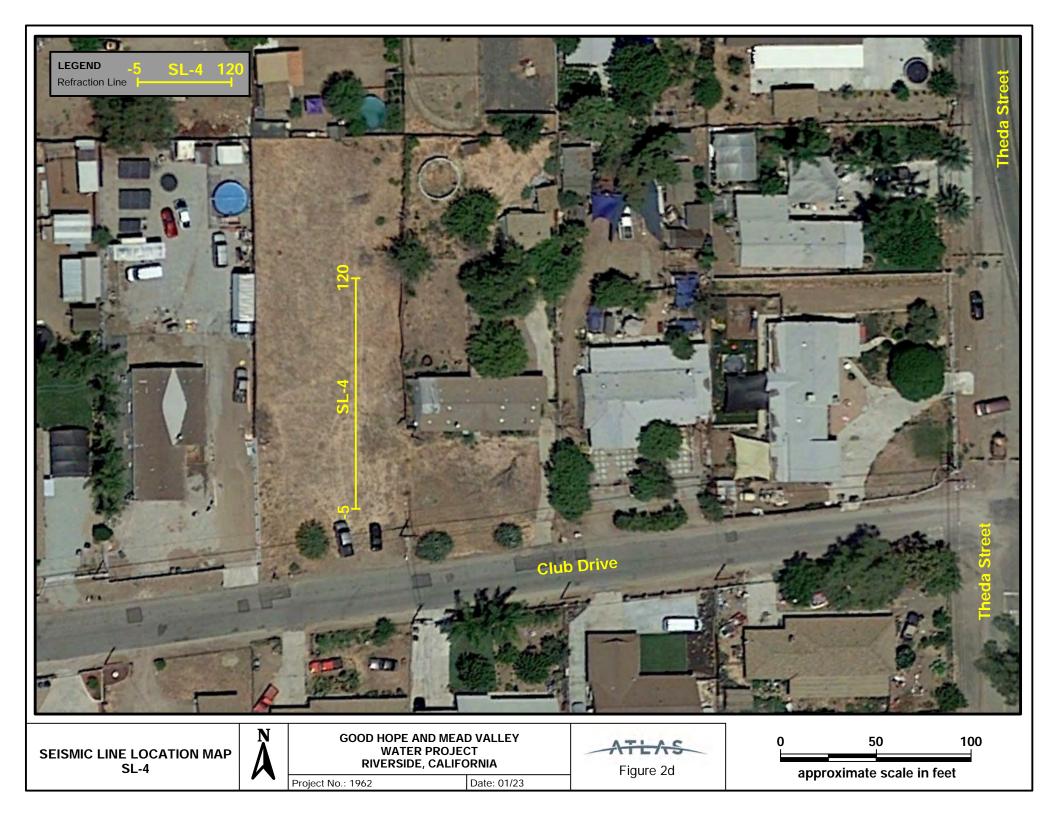

7. LIMITATIONS

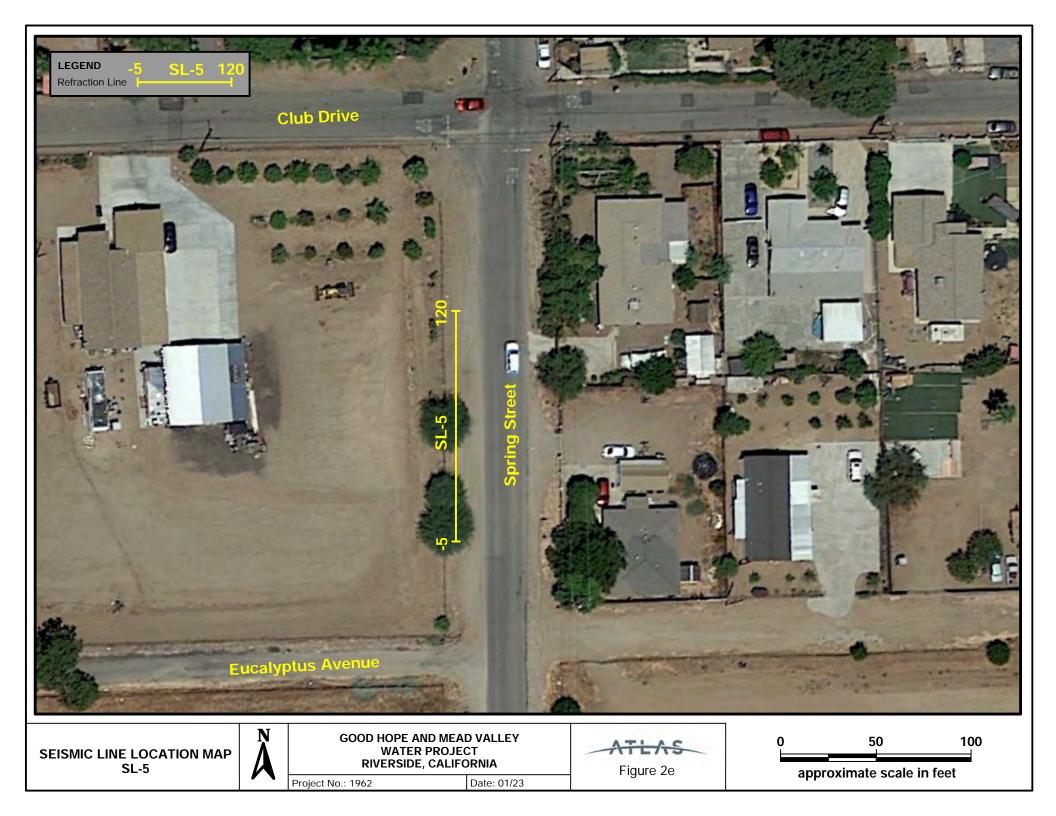

The field evaluation and geophysical analyses presented in this report have been conducted in general accordance with current practice and the standard of care exercised by consultants performing similar tasks in the project area. No warranty, express or implied, is made regarding the conclusions, recommendations, and opinions presented in this report. There is no evaluation detailed enough to reveal every subsurface condition. Variations may exist and conditions not observed or described in this report may be present. Uncertainties relative to subsurface conditions can be reduced through additional subsurface exploration. Additional subsurface surveying will be performed upon request.

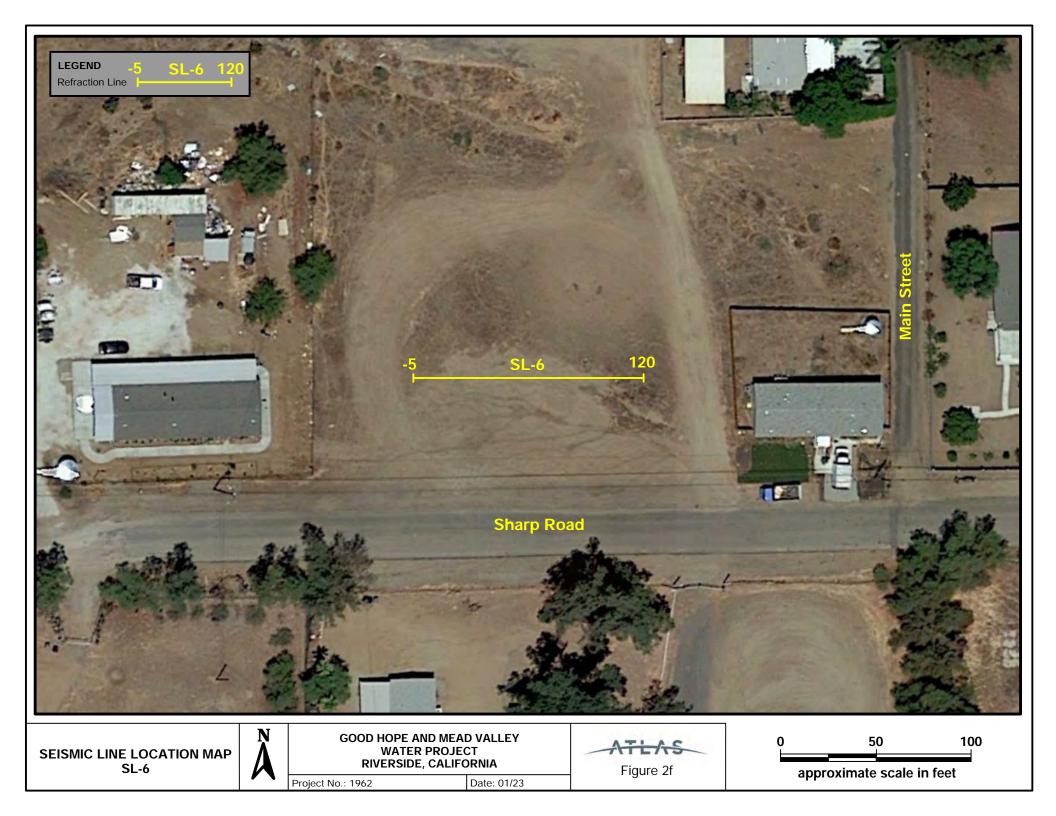

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Atlas should be contacted if the reader requires additional information or has questions regarding the content, interpretations presented, or completeness of this document. This report is intended exclusively for use by the client. Any use or reuse of the findings, conclusions, and/or recommendations of this report by parties other than the client is undertaken at said parties' sole risk.

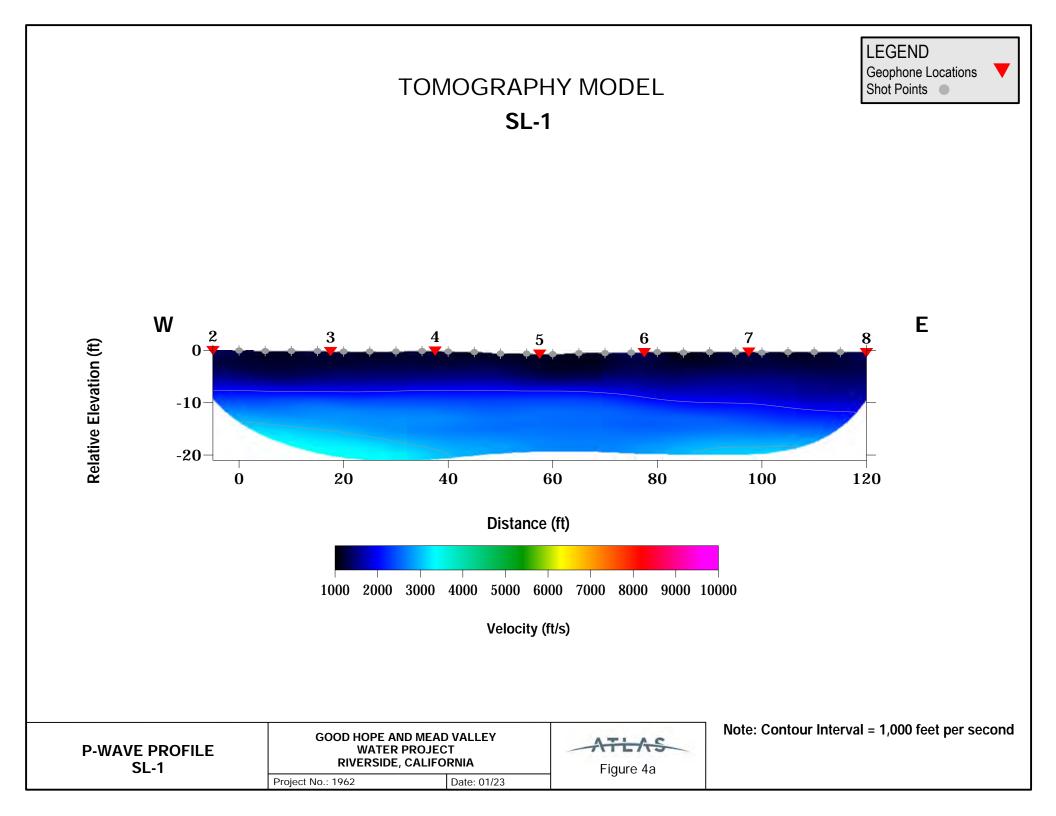

8. SELECTED REFERENCES

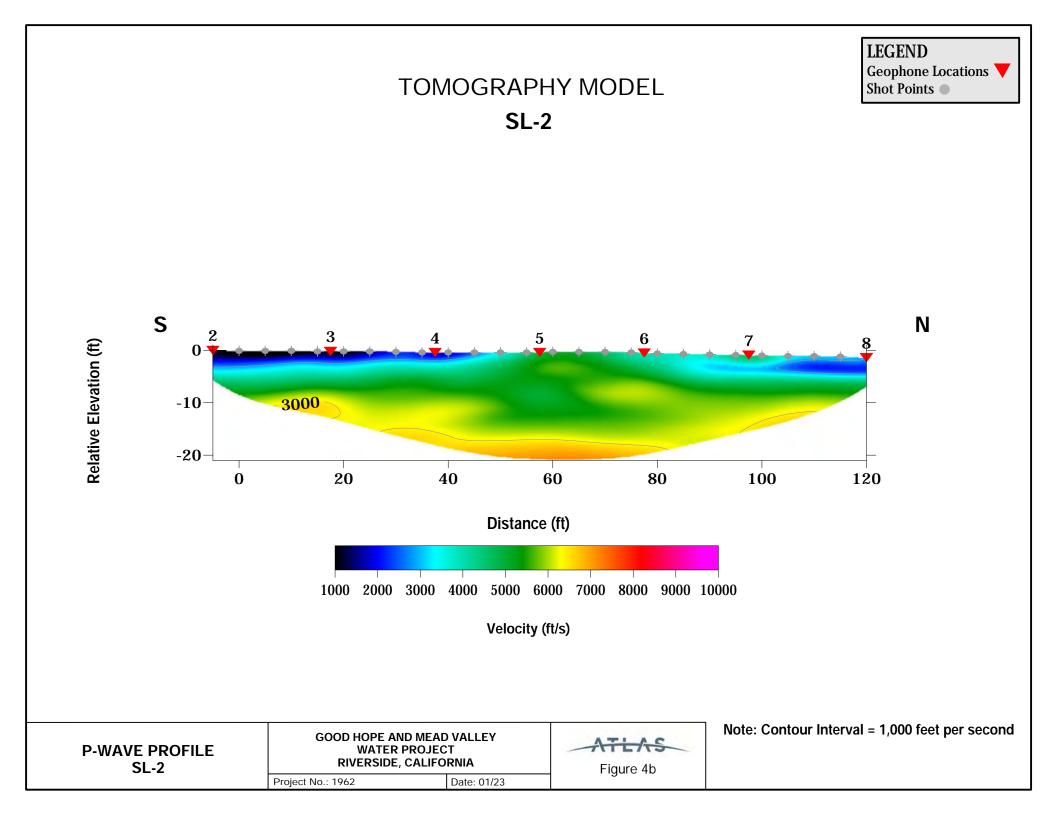
- Caterpillar, Inc., 2018, Caterpillar Performance Handbook, Edition 48, Caterpillar, Inc., Peoria, Illinois.
- Gebrande H. and Miller H., 1985, Refraktionsseismik (in German). In: F. Bender (Editor), Angewandte Geowissenschaften II. Ferdinand Enke, Stuttgart; pp. 226-260. ISBN 3-432-91021-5.
- Intelligent Resources Inc., 2022, Seismic Refraction Interpretation and Modeling Program (Rayfract), V-3.36.
- Mooney, H.M., 1976, Handbook of Engineering Geophysics, dated February.
- Rimrock Geophysics, 2003, Seismic Refraction Interpretation Program (SIPwin), V-2.76
- Rohdewald S., 2007, XTV Inversion. See http://rayfract.com/xtv_inversion.pdf
- Schuster, G.T. and Quintus-Bosz, A., 1993, Wavepath eikonal traveltime inversion: Theory. Geophysics, 58(9), 1314-1323.
- Telford, W.M., Geldart, L.P., Sheriff, R.E., and Keys, D.A., 1976, Applied Geophysics, Cambridge University Press.

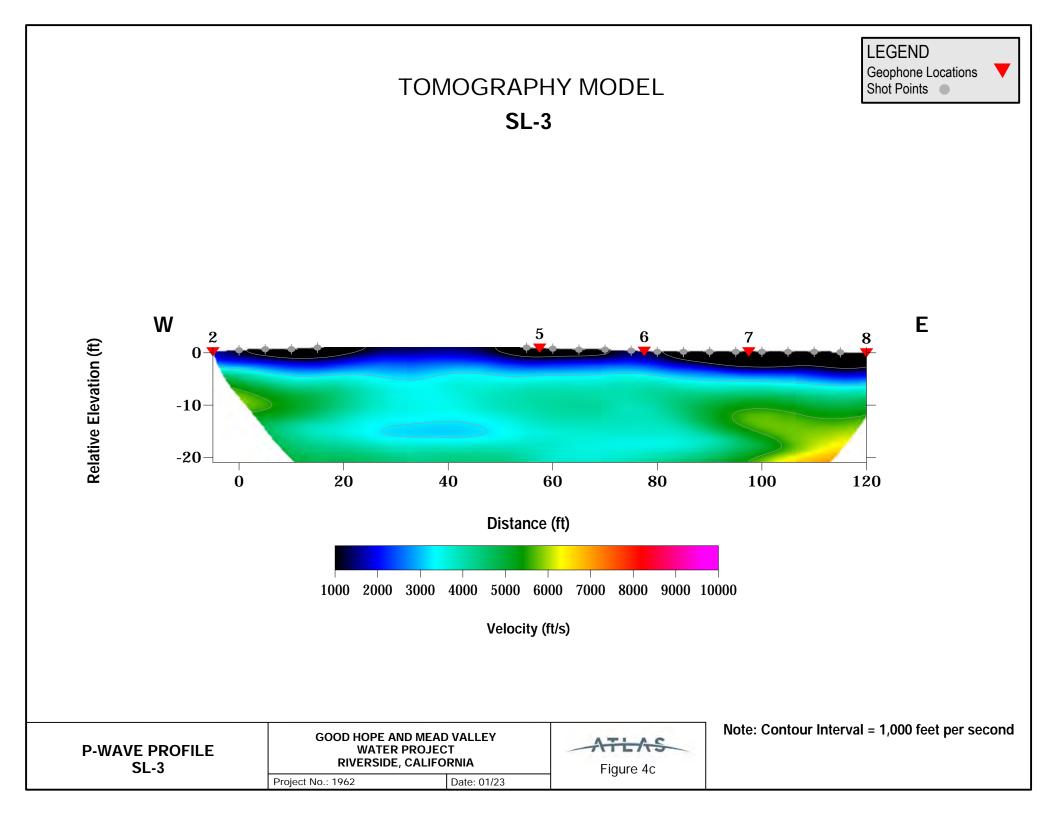


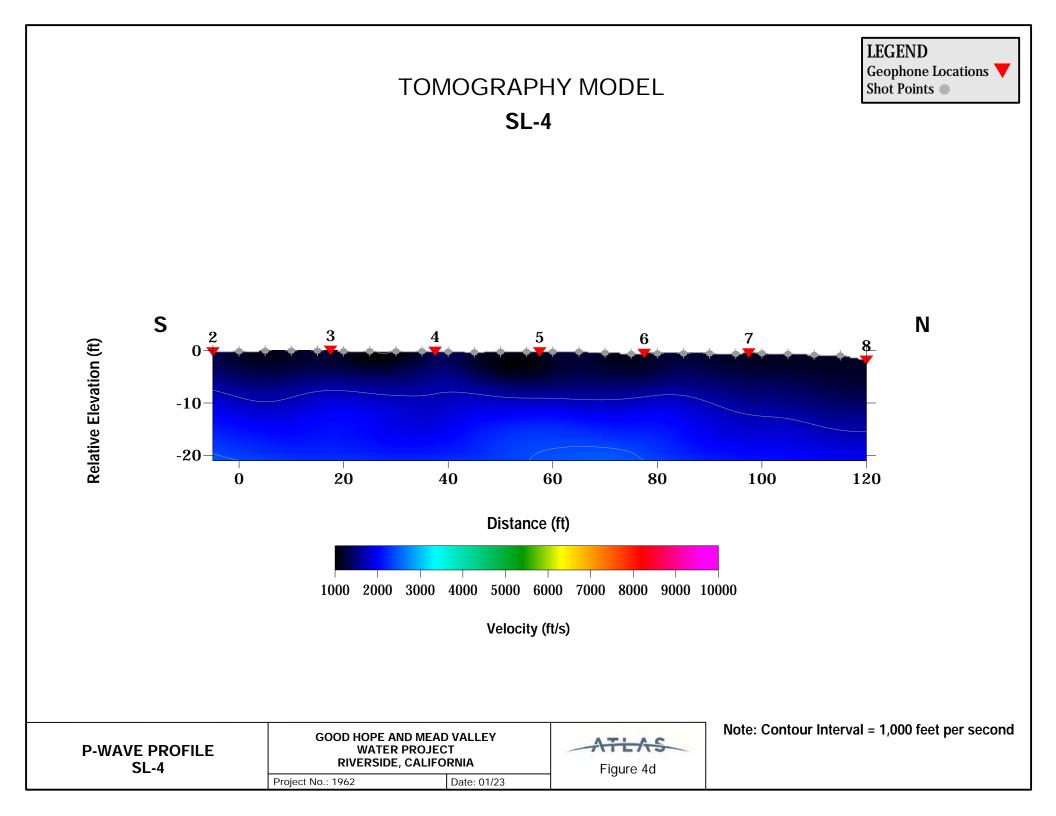


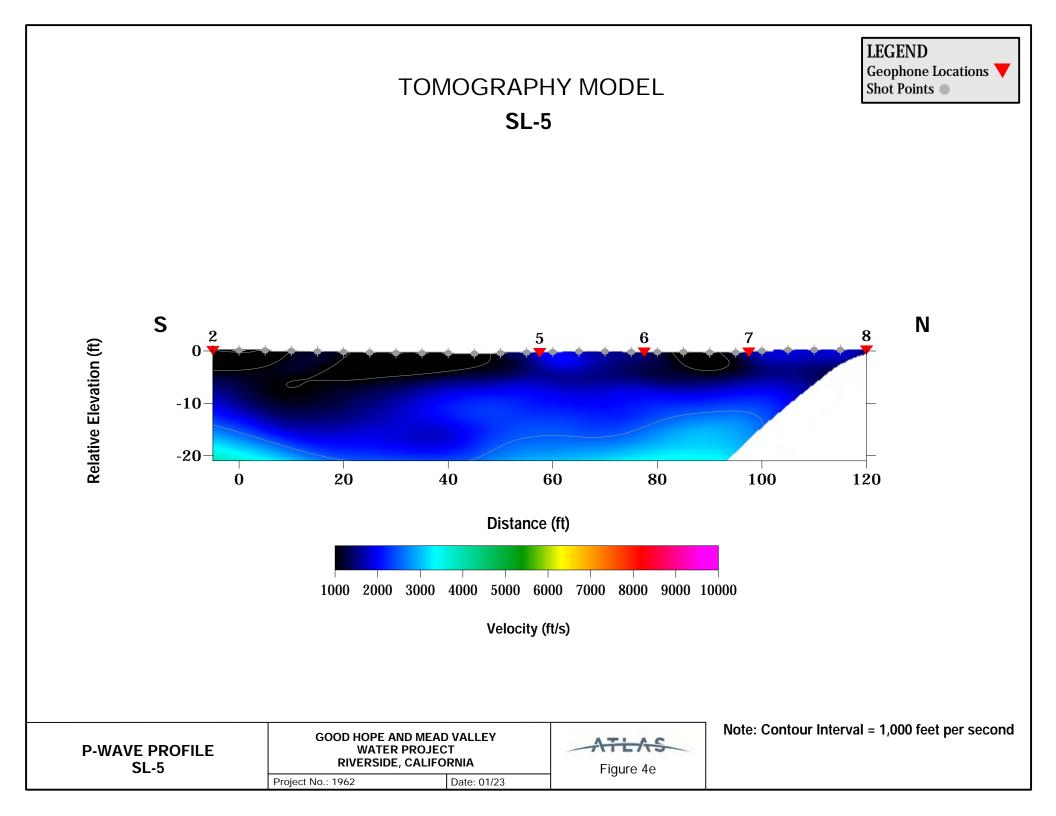


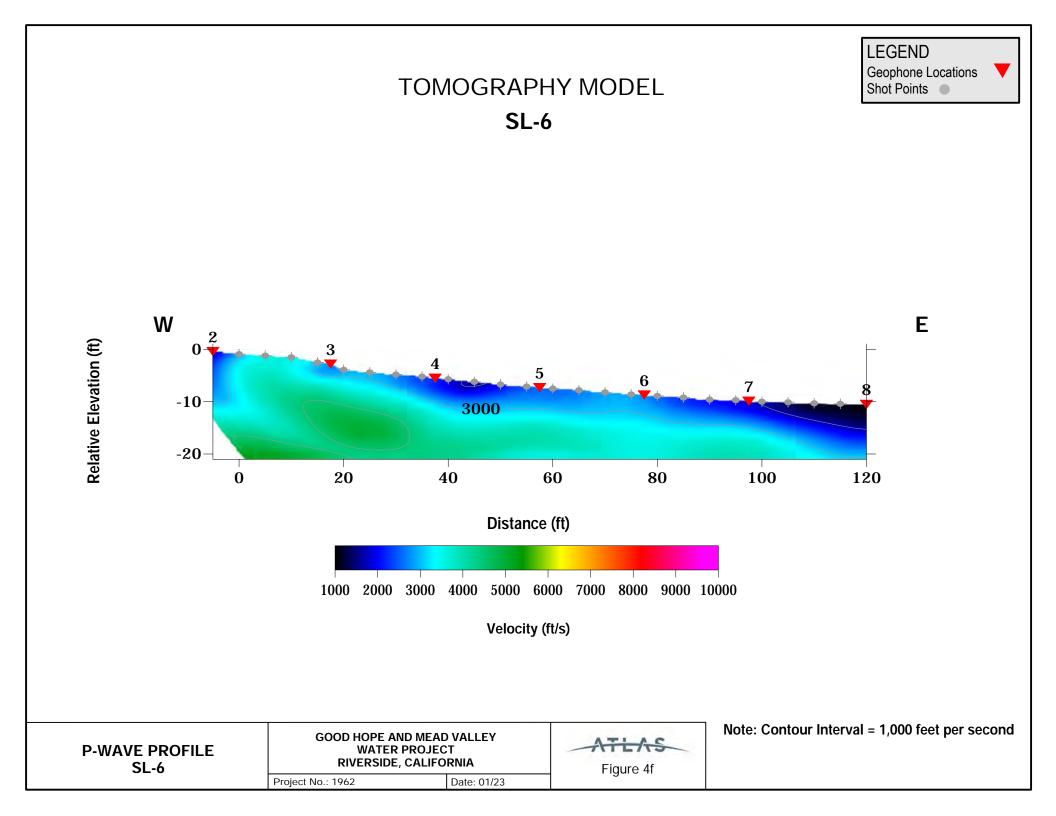









SITE PHOTOGRAPHS SL-4, SL-5 and SL-6	GOOD HOPE AND MEAL WATER PROJEC RIVERSIDE, CALIFO	Т	Figure 3b
	Project No.: 1962	Date: 01/23	3



APPENDIX E: PRELIMINARY DESIGN REPORT

JANUARY 27, 2023

PRELIMINARY DESIGN REPORT FOR MEAD VALLEY CAJALCO SEWER PROJECT

January 2023

Prepared by:

43410 Business Park Drive Temecula, CA 92590 T. 951.396.4980

Ryan Huston, PE Project Director Jamie Fagnant, PE Project Manager

TABLE OF CONTENTS

SECTION 1:	INTR	ODUCTION	1
	1.1	Introduction	1
	1.2	Purpose	1
	1.3	Report Content	3
SECTION 2:	PIPE	LINE ALIGNMENT ANALYSIS	4
	2.1	Alignment Analysis	4
	2.2	Proposed Alignment	6
SECTION 3:	HYDI	RAULIC ANALYSIS	7
	3.1	Determination of Flow	7
	3.2	Pipeline Sizing	8
	3.3	Potential for Upsizing Proposed Sizing	9
SECTION 4:	CLAR	RK STREET LIFT STATION DECOMMISSIONING	10
	4.1	Existing Lift Station Configuration	10
	4.2	Lift Station Decommissioning	10
	4.3	Lift Station Site Improvements	
	4.4	Reduction of Flow to Existing 18" Sewer	11
SECTION 5:	DESI	GN CRITERIA	
	5.1	Pipeline Materials	
	5.2	Pipeline Alignment Refinement	
	5.3	Construction Traffic Control Strategies	
	5.4	Geotechnical Conditions	
		5.4.1 Potential for Rock Excavation	
		5.4.2 Potential for Groundwater	
	5.5	Maintenance and Operations	16
		5.5.1 Manholes	
		5.5.2 County of Riverside Proposed Improvement Project	
		5.5.3 100 Year Flood Plain	17
		5.5.4 Future Sewer Connections	
		5.5.5 Cajalco Creek Crossings	18
SECTION 6:	PERM	MIT REQUIREMENTS	20
	6.1	County of Riverside Encroachment Permit	20
	6.2	CEQA and Resource Agency Permits	20
SECTION 7:	OPIN	IION OF PROBABLE CONSTRUCTION COST	
	7.1	Opinion of Probable Construction Cost	21
SECTION 8:	PRO	IECT SCHEDULE	
	8.1	Proposed Final Design and Construction Schedule	21

FIGURES

- Figure 1 Proposed Alignment
- Figure 2 Alignment Alternatives
- Figure 3 Traffic
- Figure 4 Low Water Crossing

TABLES

- Table 3.1 Existing Flow to the Clark Lift Station per Tributary Area per the Sewer Diversion TM
- Table 3.2 EMWD Minimum Slopes
- Table 3.3 Results of Potential Upsizing Hydraulic Analysis
- Table 5.1 Water Quality Test Results, ug/L

APPENDICES

- A. Mead Valley Cajalco Sewer Project Alternative Alignment Analysis Technical Memorandum prepared by Ardurra, dated January 19, 2023
- B. Mead Valley Sewer Diversion Hydraulic Analysis Technical Memorandum prepared by Dudek, dated October 17, 2022
- C. Mead Valley Cajalco Sewer Project Hydraulic Analysis
- D. Mead Valley Cajalco Sewer Project 30% Design Plans
- E. Hydraulic Analysis Prior to Buildout
- F. Potential Upsizing Hydraulic Analysis
- G. Clark Lift Station Condition Assessment Field Report, completed by V&A
- H. Draft Geotechnical Investigation completed by Atlas Technical Consultants LLC, dated January 13, 2023
- I. Groundwater Monitoring Report, Completed by Access Environmental Engineering, dated July 29, 2022
- J. FEMA Flood Insurance Rate Map, Panel 1410G
- K. Conceptual narrative for open trench at low water crossing west of Brown Street
- L. Engineer's Opinion of Probable Construction Cost
- M. Project Schedule

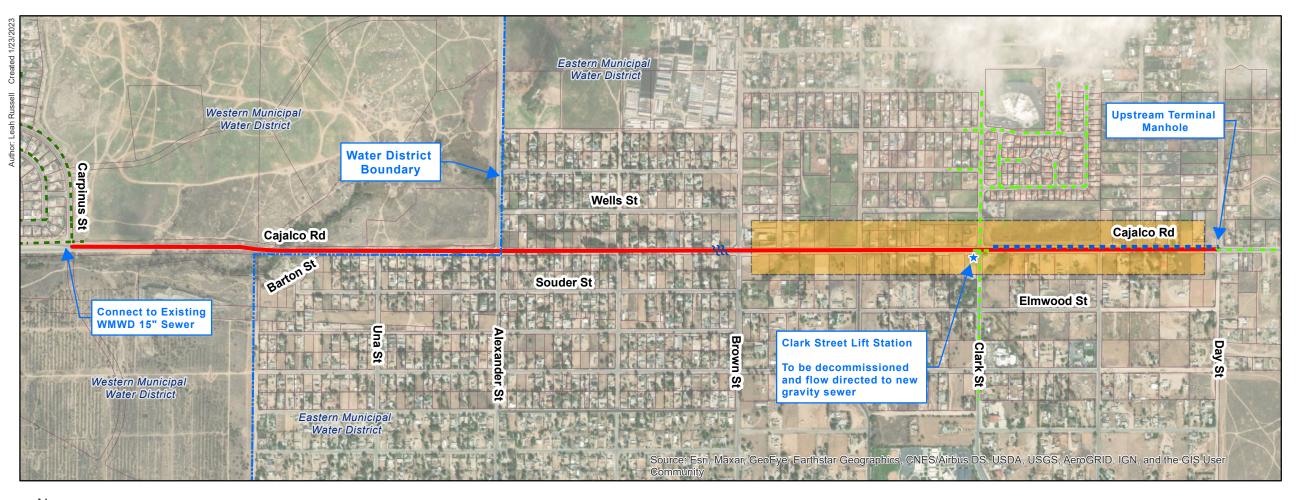
SECTION 1: INTRODUCTION

1.1 Introduction

The Mead Valley Cajalco Sewer Project will extend Eastern Municipal Water District's (EMWD or District) collection system in Mead Valley. The goals of the Mead Valley Cajalco Sewer Project (Project) are to:

- extend sewer service to and promote economic development of the disadvantaged community of Mead Valley,
- redirect existing flow to the proposed trunk sewer in order to decommission the EMWD Clark Street Lift Station, and
- provide additional flow to Western Municipal Water District's (WMWD) Western Water Recycling Facility in order to produce additional recycled water.

The Mead Valley Cajalco Sewer Project is comprised of the following major elements as shown on Figure 1:


- 12,630 ft of new gravity trunk sewer, 8"–12" diameter, with manholes along Cajalco Road from Day Street to Carpinus Drive.
- An upstream dead end manhole at the upstream (eastern) end of the project and a connection to the Western Municipal Water District (WMWD) existing 15" sewer at the downstream (west) end of the project.
- Demolition of the Clark Street Sewer Lift Station with associated sewer connections to re-direct the incoming flows to the new Cajalco Sewer, and abandonment in place of the existing 6" force main that extends from Clark Street to Day Street and currently connects to EMWD's existing 18" sewer flowing east from Day Street.

1.2 Purpose

The purpose of the preliminary design presented herein is to:

- summarize the alternative alignment analysis performed as part of this Preliminary Design,
- present the hydraulic analysis of the proposed sewer to:
 - o meet the required flow capacity and self-cleansing velocities, and
 - contrast self-cleansing velocities between the minimum required diameter and one pipe size larger,
- identify constructability and operation maintenance (O&M) issues and mitigating factors including,
 - proposed area of work and preliminary traffic control concepts for construction of the sewer,
 - o geotechnical conditions including potential for rock and groundwater,
 - document the proposed service area and potential limitations on future septic-to-sewer conversions,

Eastern Municipal Water District

PRELIMINARY DESIGN OF GRAVITY SEWER FOR THE MEAD VALLEY CAJALCO ROAD PROJECT

Figure 1. Proposed Alignment

- o document criteria for manhole spacing and future O&M access,
- identify proposed improvements to prevent inflow and infiltration due to location of portions of the sewer within the 100-year flood plain,
- o document proposed methods for crossing existing culverts of Cajalco Creek, and
- document the County of Riverside's proposed Cajalco Road Improvement Project and impacts to future operation of the Project.
- identify required permits and utility coordination required to construct the sewer, and
- provide an Engineer's Opinion of Probable Construction Cost and Project Schedule

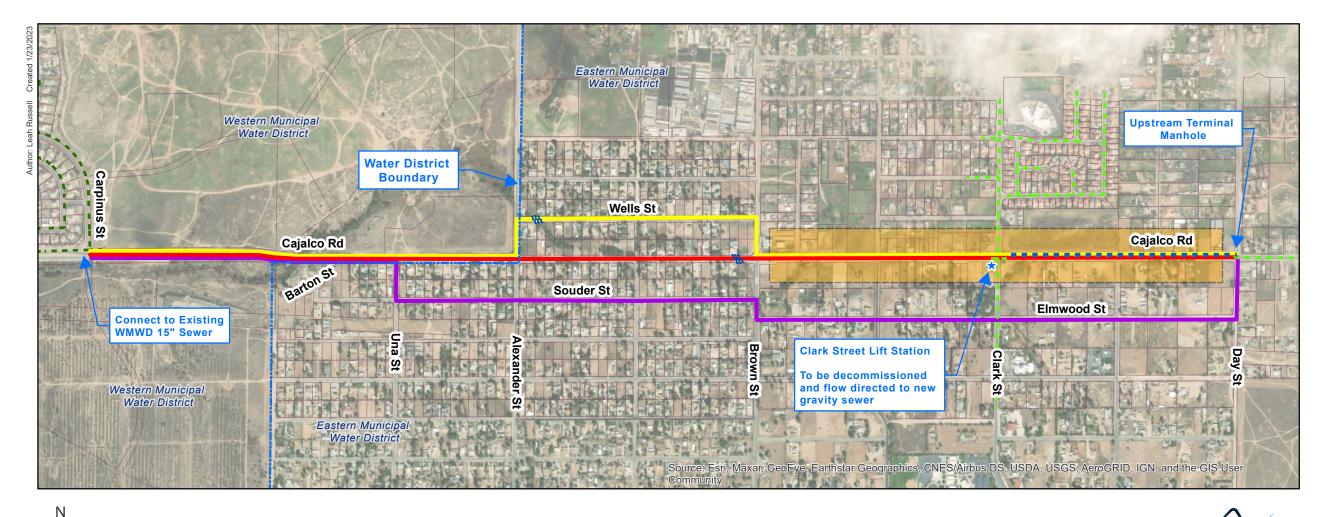
1.3 Report Content

This PDR is comprised of the following sections:

- Section 1: Introduction provides background information for the Project.
- Section 2: Pipeline Alignment Analysis summarizes the results of the previously completed study.
- Section 3: Hydraulic Analysis evaluates the capacity of the existing and proposed sewer systems to convey projected wastewater flows.
- Section 4: Clark Street Lift Station Decommissioning discusses the existing lift station, decommissioning, and site improvements.
- Section 5: Design Criteria discusses design of pipeline, traffic control, existing conditions, and maintenance and operations.
- Section 6: Permit Requirements identifies the permits that will be required to construct the Project.
- Section 7: Opinion of Probable Construction Cost provides the engineer's opinion of probable construction cost.
- > Section 8: Schedule provides the anticipated design and construction schedule.

SECTION 2: PIPELINE ALIGNMENT ANALYSIS

2.1 Alignment Analysis


Ardurra completed an Alternative Alignment Analysis Memorandum dated January 19, 2023, included as Appendix A. Three alternatives were identified and quantitatively and qualitatively evaluated on the basis of nine criteria:

- Hydraulics does the project meet the District's requirements for sewer capacity as outlined in the EMWD Guidelines for Sewer System Plans?
- Utilities are there potential existing or future utility conflicts along the alignment?
- Right-of-Way is the alternative located in public right-of-way or existing easements?
- Traffic Impacts (Construction) are there significant impacts to traffic during construction?
- Permitting what permits are required?
- Constructability/Risk will the alignment require sustained construction within areas with significant groundwater, potential for rock excavation, and/or sewer depths exceeding 20 ft in depth?
- Operations & Maintenance will the alignment provide self-cleansing velocity at peak dry weather flow, require manholes located outside of heavily traveled roadways, or require collector sewers to service the targeted service area?
- Opinion of Probable Construction Cost a planning level Engineer's Opinion of Probable Construction Cost was developed for each alternative for comparison purposes.

The three alternatives, and one sub-alternative that were identified are described below and shown in Figure 2.

- Alternative 1 This alternative extends from Day Street to Carpinus Drive, approximately 12,630 feet within Cajalco Road. This alignment is the most direct route between connection points and would maximize slope in the new alignment. This alignment would trench through the existing Arizona crossing just west of Brown Street.
- Alternative 2 This alternative is approximately 13,490 linear feet and is similar to Alternative 1, however, it turns north at Brown Street, east on Wells Street, and south on Alexander Street to rejoin Cajalco Road and continue west to Carpinus Drive. The main benefit of this alignment would be the avoidance of impacts on the existing Arizona crossing on Cajalco Road, just west of Brown Street. This alignment would impact an Arizona crossing on Wells Street, just east of Alexander Street.
- Alternative 2A This alternative is similar to Alternative 2A (with a total length of 13,490 ft), except after turning north at Brown Street and east on Wells Street, it would turn south on Mead Street to rejoin Cajalco Road. This alignment was identified in discussions with District Staff as a potential alignment that does not require trenching through an existing Arizona crossing.

Eastern Municipal Water District

ARDURRA

PRELIMINARY DESIGN OF GRAVITY SEWER FOR THE MEAD VALLEY CAJALCO ROAD PROJECT

Figure 2. Alignment Alternatives

However, Mead Street between Wells and Cajalco Roads is an undeveloped right-of-way with a double track dirt path that does not stay within public right-of-way. The actual right-of-way contains several mature trees and is proposed to be crossed in the future with an unlined earthen channel to convey the FEMA 100-year flood flows. Due to potential environmental impacts and the future liability of a sewer installation under an unlined flood channel, this alternative was not carried forward.

 Alternative 3 – This alternative is located within Souder Street and Elmwood Street and would bypass Cajalco Road from Day Street to Una Street. This alternative requires that collector sewers would need to be installed along Cajalco Road to provide service to the target service area from Brown Street to Day Street. This alternative would comprise approximately 12,610 feet of trunk sewer and an additional 4,570 feet of collector sewer.

2.2 Proposed Alignment

The three alternatives were evaluated against the identified criteria. Alternative 1, the alignment directly along Cajalco Road, was selected as the preferred alternative due to having the shortest route, minimizing impacts to residences by avoiding narrow residential streets, avoiding sewer depths over 20 feet and having the lowest overall cost. After review by the District of the draft Alignment Analysis Memorandum, Alternative 1 was selected as the preferred Project.

SECTION 3: HYDRAULIC ANALYSIS

3.1 Determination of Flow

Considering the potential for receiving additional flow from the Mead Valley area, WMWD previously contracted with Dudek to perform a hydraulic analysis of the impact of the additional flow on WMWD's downstream facilities. This memorandum, titled Mead Valley Sewer Diversion Hydraulic Analysis, dated October 17, 2022 (Sewer Diversion TM), is included herein as Appendix B.

The Sewer Diversion TM identified tributary areas to the proposed Mead Valley Cajalco Sewer as identified below.

Land Use Type	Average Dry Weather Flow (gpd)	Peak Dry Weather Flow (gpd)	Peak Design Flow (gpd)
School	6,753	19,329	23,195
Public Facility	4,424	12,697	15,236
Medium Density Residential	32,430	93,074	111,689
Totals	43,607	125,100	150,120

Table 3.1 – Existing Flow to the Clark Lift Station per Tributary Area per the Sewer Diversion TM

In addition to the above inflow associated with land use types, the Sewer Diversion TM identified future flows from the proposed EMWD target service area and designated this area as the Mixed Used Policy Area, or MUPA, shown in orange in Figure 1 of the Sewer Diversion TM. The Sewer Diversion TM analyzed the respective EMWD and WMWD methodologies for analyzing proposed flows and identified the EMWD method as being more conservative. EMWD standards were therefore utilized to calculate the flow.

Per EMWD guidelines, Average Dry Weather Flow (ADWF) in gallons per day is calculated as 235 gallons per day per equivalent dwelling unit (EDU) at 5 EDU/acre. A peaking factor of 2.87 is applied to the ADWF to obtain the Peak Dry Weather Flow (PDWF). A peaking factor of 1.2 is applied to the PDWF to obtain the Peak Wet Weather Flow (PWWF). Ardurra identified influent acreage in the proposed new service area per reach and assigned corresponding flows. The per reach influent flow is identified in Appendix C - Mead Valley Cajalco Sewer Project Hydraulic Analysis.

The total influent flow calculated per the EMWD Guidelines varies from that presented in the Sewer Diversion TM. The Cajalco Sewer Project Hydraulic Analysis identified a future influent flow of 80,311 gpd Average Dry Flow whereas the Sewer Diversion TM identified the same future influent flow as 61,100 gpd Average Dry Flow. This variance in proposed future flow could potentially be attributed to a difference in acreage of the proposed service area, or "Mixed Use Policy Area" as it is referred to in the Sewer Diversion TM. This variance needs to be coordinated with WMWD as the Project moves forward.

Additionally, the Sewer Diversion TM identified "School" and "Public Facility" acreages as currently on septic systems. Per EMWD, these existing service areas are currently serviced by EMWD sewers. This also needs to be coordinated with WMWD as the Project moves forward.

3.2 Pipeline Sizing

Using the estimated maximum influent flow described above, Ardurra applied the standards described in the EMWD Guidelines for Sewer System Plan to identify the minimum required diameter of the Project pipelines. These results are shown in Appendix C – Mead Valley Cajalco Sewer Hydraulic Analysis and on the Mead Valley Cajalco Sewer 30% Plans in Appendix D. The EMWD standards are summarized below:

- Maximum d/D (depth to diameter ratio) of 0.5 for sewers 12" and below during PWWF.
- Maximum d/D of 0.75 for sewers 15" and above during PWWF.
- Minimum velocity of 2 fps (feet per second) during PDWF.
- Minimum slopes as follows:

Sewer Size	Minimum Slope
8″	0.004
10"	0.0032
12"	0.0024
15″	0.0016
18"	0.0014

Table 3.2 – EMWD Minimum Slopes

The hydraulic analysis identified 8,560 linear feet of proposed minimum pipe size as 12" downstream (west of) of Clark Street, 1,335 linear feet of proposed minimum pipe size of 10" upstream of Clark Street to Haines Street, and 2,425 linear feet of proposed minimum pipe size of 8" upstream (east of) Haines Street. This pipe sizing satisfies the above EMWD sewer sizing requirements with the exception of the upstream dead end reach (400 ft in length) which will not meet the requirement for 2 fps self-cleansing flow. The minimal flows in this dead end reach would not allow for this requirement to be met regardless of slope.

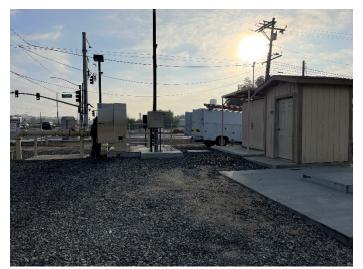
The basis of design includes the currently undeveloped area along Cajalco Road. Ardurra performed an additional Hydraulic Analysis to check for self-cleansing velocities prior to development of this area. Prior to buildout, the sewer would be dry upstream of Clark Lift Station. Downstream of the lift station the sewer would not meet self-cleansing velocity between Haines Street (MH 21) and Una Street (MH 10) with velocities at Peak Dry Weather in these reaches between 15. Fps and 2.0 fps. The full results are shown in Appendix E - Hydraulic Analysis Prior to Buildout.

3.3 Potential for Upsizing Proposed Sizing

The District requested the potential for a larger pipe size to be evaluated to accommodate potential future septic-to-sewer conversions without compromising self-cleansing velocities for the current design flow. Note that the current design flow includes the target service area which is not yet built out and does not currently meet self cleansing velocities without the inclusion of the undeveloped target service area as discussed in Section 3.2 of this preliminary design report. Upsizing the proposed sewer to 15" while keeping the currently designed slopes constant was evaluated and is presented in Appendix E – Potential Upsizing Hydraulic Analysis. It should be noted that the proposed design already has adequate capacity to provide a larger flow than the design flow as noted in the below table under current design, maximum capacity. A summary of the results of the Potential Upsizing Hydraulic Analysis are shown in the below table.

Design	Sewer Sizing	Total Design Flow	Limiting Reach for Maximum Capacity	Maximum Capacity
Current Design	8,560 LF 12" from Carpinus Drive to Clark Street 1,335 LF 10" from Clark Street to Haines Street	123,900 gpd ADWF/ 86.04 gpm ADWF/ 246.94 gpm PDWF/ 296.33 gpm PWWF/	Max d/D of 0.5 per minimum slope as designed of 0.0290 downstream of	180,167 gpd ADWF/ 125.11 gpm ADWF/ 359.1 gpm PDWF/ 430.9 gpm PWWF
	2,425 LF 8" from Haines Street to Day Street 11,491 LF 15" from		Alexander Street Max d/D of 0.75	1833 gpm PWWF
Potential Upsizing	Carpinus Drive to Robinson Street 830 LF 8" from Robinson Street to Day	N/A	per minimum slope as designed of 0.0290 downstream of	west of Una Street/ 1425 gpm PWWF east of Una Street
	Street		Alexander Street	

Table 3.3 – Results of Potential Upsizing Hydraulic Analysis



SECTION 4: CLARK STREET LIFT STATION DECOMMISSIONING

4.1 Existing Lift Station Configuration

The Clark Street Lift Station is a submersible lift station with two 4" 150 gpm submersible pumps. The precast wet well is approximately 20 feet deep and 8 feet in diameter. Influent flow is routed into the wet well from Clark Street via an 8" PVC sewer. A precast valve vault contains two 6" check valves, three 6"

plug valves, and associated 6" ductile iron piping. A plug valve is buried on the discharge side of the valve vault. Effluent flow is routed north to Cajalco Road and is pumped east to a discharge manhole at Cajalco Road and Day Street via a 6" PVC force main. An existing pressure regulator is located in the southwest corner of the property and connected to the 18" waterline running along Cajalco Road via two 164' lengths of 8" PVC. The lift station has an onsite emergency generator that was recently installed and served by an electrical service via a power pole in the southeast corner of the property. Α condition assessment report prepared by V&A is included in Appendix G.

Clark Street Lift Station

4.2 Lift Station Decommissioning

Upon completion and acceptance of the proposed Mead Valley Cajalco Sewer, the Clark Street Lift Station is proposed for decommissioning. Decommissioning is understood to include the following:

- Demolition or salvage of above grade facilities including:
 - Emergency generator (salvage)
 - Motor control center and Automatic Transfer Switch (salvage)
 - Generator Shed
 - Approximately 560 feet of chain link fence, gates and barbed wire
 - Shade structure (salvage)
- Relocation of the existing Pressure Regulator into the street right of way along Cajalco Road
- Demolition or salvage of the existing wet well including:
 - Pumps (salvage)
 - o 8" ductile iron pipe
 - o Float switches and bubbler system

- 20-ft deep, 8-ft diameter precast wet well remove the cover and top three feet of precast concrete, fill with slurry or sand and abandon in place.
- Demolition or salvage of the valve vault
 - o 3 plug valves
 - o 2 check valves
 - o Ductile iron pipe and fittings
 - Pipe supports
 - o Ladder
 - Precast concrete wet well
- Buried piping and Manhole
 - o Remove isolation valve and salvage
 - Plug existing 8" diameter PVC gravity sewer at wet well wall and abandon pipe in place.
 - Remove frame and cover and top 3 ft of manhole in Clark Street. Fill with slurry up to remaining manhole wall, and with compressed backfill to grade and abandon in place. Install paving to match existing pavement.
 - Plug 8" sewer at connection to new Mead Valley Cajalco Sewer and abandon remaining 8" sewer in place.
 - On lift station site, remove 6" force main to 3 ft below grade and plug remainder with concrete and abandon in place.
 - Along Cajalco Road, plug 6" forcemain with concrete and abandon in place.
 - Plug 6" force main inlet to receiving manhole and abandon 6" force main in place.

4.3 Lift Station Site Improvements

Following completion of decommissioning, the lift station site will have had existing buried utilities removed within the top three feet and will be covered in a layer of crushed rock to stabilize surface. The resulting site can then be repurposed by the District or sold for development.

4.4 Reduction of Flow to Existing 18" Sewer

Removal of the flow from the receiving 18" sewer east of Day Street will result in a dry sewer until lateral flow enters the sewer main. Remaining flow downstream of the existing force main connection point is not likely to meet self-cleansing velocities. Ardurra recommends the District conduct additional study to determine the length of sewer that will not meet self-cleansing velocity and put those reaches on an enhanced cleaning frequency of at least twice per year.

SECTION 5: DESIGN CRITERIA

5.1 Pipeline Materials

EMWD Guidelines require PVC or VCP pipe. VCP pipe is required for sewers 15" in diameter or greater. Based on the 12" diameter size defined by the analyses presented in Section 3, the proposed Project is currently designed with PVC pipe. If the District elects to upsize portions of the 12" sewer to 15", the design will need to be modified to utilize VCP pipe for reaches 15" in diameter or larger.

Manholes are proposed to be constructed utilizing precast polymer concrete manholes. Due to the shallow groundwater in some areas, ballast slabs are proposed for the manholes to prevent flotation. Specific manholes requiring ballast slabs will be finalized during final design. Per EMWD standards, where groundwater is encountered, manholes shall be coated in the exterior by an approved material, Barricoat-R, Mel-Rol-LM, or approved equal. EMWD standards do not give explicit guidelines regarding the size of manholes other than providing standard details for four, five and, six foot manholes. Ardurra recommends the District consider four foot manholes for sewers 12" and smaller (including all manholes in the proposed project) and five foot manholes for sewers 15" and larger (if the District elects to increase the diameter of the proposed sewer).

5.2 Pipeline Alignment Refinement

Starting with the preferred conceptual sewer alignment (as described by the analysis in Section 2 above), Ardurra has refined the alignment based on several factors including the following:

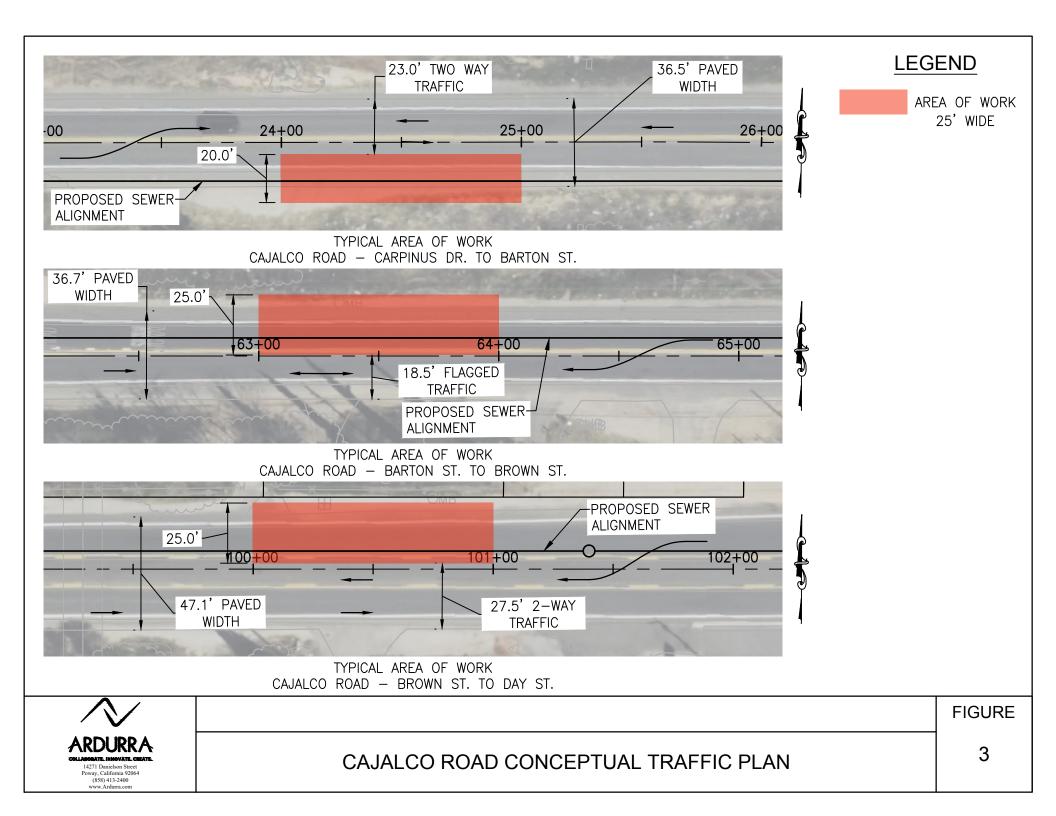
- avoidance of conflict and preferred horizontal separation with existing utilities
- coordination opportunities that would align better with the County of Riverside's plan for a future widening and construction of raised medians along Cajalco Road
- construction means and methods
- meeting funding deadlines
- impacts to the community, and
- impacts to traffic flow considering that Cajalco Rd is used as a thoroughfare connecting I-15 to I-215.

When considering construction means and methods, Ardurra took into consideration the following factors:

- width of the trench
- type of excavation equipment necessary
- the operation of the contractor for offloading spoils
- the safety and efficiency of the work zone for both workers and the motoring public, and
- how to effectively and efficiently construct the improvements in the shortest duration to minimize impacts to the community and motorists.

5.3 Construction Traffic Control Strategies

Cajalco Road is a heavily traveled arterial road that connects I-15 and I-215. The proposed alignment shown in the 30% plans (see Appendix D) provides both opportunities and challenges for traffic control strategies. While it is the Contractor's responsibility to tailor his means and methods to provide an adequate work zone and the Contractor is solely responsible for job site safety, Ardurra is presenting conceptual traffic control strategies herein in order to streamline the permitting process with the County. To provide for an adequate work zone, Ardurra proposes that the contractor be allowed a 20-ft to 25-ft wide work zone. This provides space for the excavation equipment centered over the trench, room for workers to maneuver both in and above the trench and around the equipment, and space for offloading to the side of the excavation.


Initial traffic control concepts are illustrated in Figure 3. Ardurra made an initial review of the available roadway widths and potential traffic control strategies along the different segments of the project alignment. For the segment of Cajalco Road. between Brown Street. and Day Street. (approximately 5,100 ft in length) there is adequate roadway width to provide for two lanes of traffic, one in each direction, parallel to the construction corridor.

Along the segments between Carpinus Drive. and Barton Street. (approximately 2,600 ft in length) and between Barton Street and Brown Street (approximately 4,700 ft in length), the roadway is not wide enough to allow for two lanes of traffic in parallel with the construction corridor. Along these segments, the use of a single traffic lane controlled by flagging operations was initially considered. Subsequent discussions with EMWD and the County indicated a strong preference for maintaining two lanes of traffic without the need for flagging operations. There was also discussion about working hours and the possibility of performing night work for certain sections along Cajalco Road. Discussions regarding working hours included suggested reduced daytime working hours of 9AM to 3PM, and nighttime hours of 8PM to 5AM, although these were preliminary discussions. Final determination of working hours is expected to be received by the County upon submission of detailed traffic control plans.

Based on further review of the two narrow road segments, the following revised approaches are proposed at this preliminary design stage:

- Between Carpinus Drive and Barton Street Two lanes of traffic can be provided by reducing the work area width to 20 feet. Although this will impact construction efficiency, the benefit of having two lanes for traffic is considered more valuable.
- Between Barton and Brown Streets This segment is very constrained, and more survey and utility information is required to assess options for providing more space for traffic without a flagging operation. Strategies that will be evaluated further during final design will include modifying the proposed sewer alignment in this section, providing temporary paving along the unimproved shoulder area, and reducing the work zone width. Depending on the specific

constraints, potential trade-offs may include the decreased horizontal separation from existing utilities, placement of the sewer line inside the proposed alignment of a raised median (to be constructed as part of the County's future improvements along Cajalco Road., and impacts to properties along areas where temporary pavement is placed.

Recommendations for the traffic control approach for these alignment segments and associated project modifications will be performed during final design.

5.4 Geotechnical Conditions

A Draft Geotechnical Investigation has been performed by Atlas Technical Consultants LLC (Atlas); a copy of their report, stamped draft and dated January 13, 2023, is and included in Appendix H. Thirteen (13) borings to depths of up to approximately 41 feet below the existing ground service were performed in September 2022. Additionally, Atlas recently installed (January 2023) two temporary groundwater monitoring wells to a depth of about 40 feet below ground surface. These wells were added to Atlas' scope and installed following production of the Draft Geotechnical Report. Data from these monitoring wells will be included in the Final Geotechnical Report.

The geotechnical report indicated trenching operations may encounter very dense granular materials and potentially igneous rock formations. The presence of cobbles, boulders and groundwater are expected at the site. Fill was encountered in some borings to depths of five feet below grade. Fill materials were noted as moist, medium dense sandy silt, silty sand, and clayey sand and could cause the potential for trench sloughing.

5.4.1 Potential for Rock Excavation

The draft Geotechnical Report recommends that the Contractor be prepared to mobilize equipment (such as rock breakers, carbide tipped teeth, or carbide/diamond tipped coring equipment) to excavate/drill hard rock materials. A refraction survey to better assess rock hardness and excavatability was completed in January 2023 and will be included in the final Geotechnical Report. The final version of this preliminary design report will be updated accordingly to reflect these findings. Although a preliminary cost opinion is assigned to potential for rock excavation in this preliminary design report, it is anticipated that the results of the refraction survey will allow the project team to more accurately identify the potential and associated cost associated with rock excavation.

5.4.2 Potential for Groundwater

The proposed alignment crosses the historic drainage way of Cajalco Creek in two locations, west of Barton Street, and west of Brown Street. This drainageway was taken into account in siting the proposed groundwater monitoring wells. Monitoring wells associated with a remediation effort adjacent to a gas station at Brown Street and Cajalco Road are currently being monitored on a regular basis with information available on the Geotracker website. The most recent quarterly report, dated July 29, 2022 is included in Appendix I. Groundwater elevations during the period of the quarterly report varied between

9 feet and 11.5 feet below grade. The District obtained a sample of the groundwater during a site visit on October 27, 2022 and tested the sample in their lab. Results are shown below.

Analysis	Results	Analysis	Results
Ag	<0.3	Мо	12.8
Al	3,440	Ni	7
As	2.6	Pb	<0.9
В	282	Sb	<0.12
Ва	344	Se	3.8
Ве	<0.3	Sn	<0.6
Cd	<0.09	Sr	1410
Со	3.38	TI	<0.9
Cr	7	V	147
Cu	7.2	Zn	20.3
Fe	10,600	рН	7.39
Mn	158		

Table 5.1 – Water Quality Test Results, ug/L

The borings associated with the Geotechnical Report noted groundwater as shallow as 18 feet below grade. However, the report also noted available literature indicates the groundwater could be shallower than 10 feet below grade. Two groundwater monitoring wells were recently installed (January 2023) at the Cajalco Creek crossing west of Barton Street and west of Clark Street (Borings 6S and 2S, respectively) by Atlas. It is proposed that these wells be monitored by Atlas and EMWD with water loggers during preliminary and final design. The water loggers will be pulled quarterly and the water level records downloaded.

Based on these preliminary results it is expected that portions of the alignment will require dewatering. Options for dewatering disposal include:

- obtaining a discharge permit to discharge to an existing WMWD gravity sewer, or
- obtaining an NPDES discharge permit (estimated time to obtain is 9 months).

Ardurra recommends the feasibility of both options be explored during final design taking into account potential treatment requirements, timeline for permit approval, estimated flow rates, and anticipated locations where dewatering will be required.

5.5 Maintenance and Operations

5.5.1 Manholes

The EMWD Guidelines for Sewer System Plan require a minimum manhole spacing of 500 feet. Additionally, manholes should be installed where there is a change in alignment, and at intersections to

capture potential future inflow. Limited future flow is expected as discussed further below. Additional manholes at intersections are located at Barton Street, Alexander Street, Mead Street, Brown Street, Haines Street, and Clark Street (to capture existing flow).

Traffic control required for accessing the sewer manholes for maintenance operations is divided into three broad phases:

- Carpinus Drive to Barton Street The sewer alignment is located on the south shoulder. Traffic control for manhole access will require either flagging, or signage and cones to narrow and redirect traffic lanes to the north.
- Barton Street to Brown Street The sewer alignment is located in the westbound traffic lane. Flagging is expected to be required for manhole access to this area.
- Brown Street to Day Street The sewer alignment is located in a center turning lane. Traffic control to isolate the center lane from surrounding traffic is expected to be required for manhole access to this area.

5.5.2 County of Riverside Proposed Improvement Project

The County has completed a 30% design and is currently in the process of preparing environmental documents for a road and drainage improvement project along Cajalco Road. The proposed project would widen Cajalco Road, install new storm drains, and channelize the historical Cajalco Creek drainageway west of Barton Street. Although the County is the lead agency for this project, the channelization of the drainageway between Alexander Street and Brown Street is in accordance with the Riverside County Flood Control and Water Conservation District master planning efforts. The preliminary roadway plans indicate that minor grading will raise the elevation of Cajalco Road. West of Barton Street the project proposes dividing the west and east bound traffic lanes with the east bound lanes traversing the existing Cajalco Creek Crossing and constructing a new bridge over Cajalco Creek for the west bound lanes.

From Barton Street to Day Street, the County's proposed project includes a new median. The location of the proposed sewer alignment was selected, in part, to facilitate future access by placing the sewer alignment outside of the future median.

5.5.3 100 Year Flood Plain

Portions of the project are within the FEMA mapped flood plain for Cajalco Creek. FEMA Flood Insurance Rate Map Panel 1410G is included in Appendix J for reference. Ardurra recommends that during the final design, the manholes located within the mapped FEMA flood plain be identified and equipped with locking, gasketed composite manhole lids to prevent infiltration.

5.5.4 Future Sewer Connections

As discussed with the District, the proposed sewer profile will be designed for the ultimate capacity and self-cleansing flows to serve the tributary area described in Section 3 of this report. It is noted that even if the sewer has the hydraulic capacity to receive additional flow, the profile of the sewer may not provide

enough slope to allow for capturing flow from adjacent low-lying areas not already included in the proposed tributary area.

5.5.5 Cajalco Creek Crossings

Cajalco Creek crosses Cajalco Road in two locations along the proposed alignment. The proposed design approach to each of these locations is described further below.

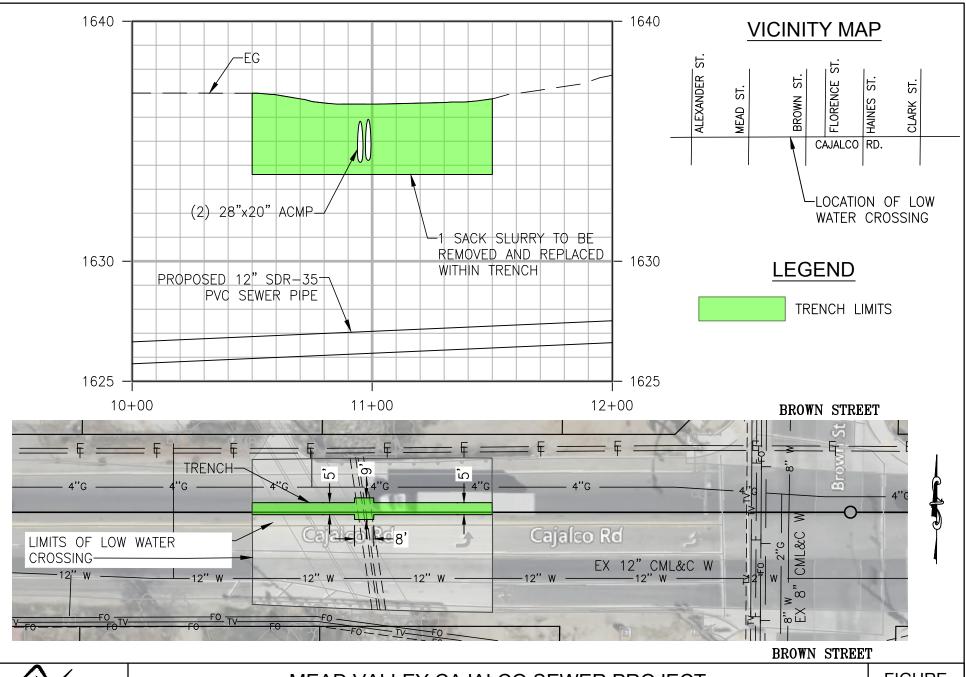
West of Barton Road, Cajalco Creek crosses the road via a culvert comprised of one 84" CMP (corrugated metal pipe) and one 60" CMP. Ardurra's survey results indicate that there is sufficient space to route the sewer alignment over these pipes. However, the County's proposed Cajalco Road Widening Project proposes replacing this culvert with a new triple box culvert. Ardurra has requested the County provide the invert and size of the proposed culvert in order to confirm that the proposed sewer will also clear the future culvert.

West of Brown Street, Cajalco Creek crosses Cajalco Road via a low water (Arizona crossing) and two parallel 28"x20" arch CMPs. The County's project proposes replacing this culvert with a new triple 8 ft W x 4 ft H box culvert at a lower invert elevation. Ardurra has designed the proposed sewer to accommodate this future drainage structure based on design information received from the County (see 30% Plans). Ardurra previously proposed that construction of the sewer across the existing low water crossing, which is comprised of a reinforced concrete pad extending 100 feet along Cajalco Road, be accomplished via open trench. This construction approach was presented to the County at a meeting on October 27, 2022. Following the meeting, Ardurra provided the narrative herein as Appendix K. Figure 4 diagrams the proposed open trench installation. The County has indicated that they are open to an open trench crossing of the low water crossing with the addition of the following preliminary input from the County's structural engineer:

- Use proper compaction under and over the existing 20" pipes or use 1-2 sack slurry.
- When cutting the concrete slab, the contractor should avoid cutting the existing #4 rebar. Where damage to the rebar is unavoidable, use drill and dowel with an equivalent number of bars with adequate development length and embedment depth.

A full structural detail of the proposed replacement section for the Arizona crossing will be performed during final design.

Additionally, the District has contracted with Albert A. Webb & Associates (Webb) to complete the required environmental documents and permit applications associated with sewer construction across the Arizona crossing. Initial conversations with Webb indicate that an open trench approach may trigger additional agency permits. At this time, the District has directed Ardurra to proceed under the assumption that the open trench method will be utilized and included in the preliminary opinion of construction cost. This direction was given with the understanding that if during final design open trench construction triggers agency permits that impact the proposed project timeline significantly (e.g. such that it might not be completed in time for funding requirements), then additional study would be conducted to evaluate the feasibility of a trenchless construction approach.



CAJALCO ROAD LOW WATER CROSSING

MEAD VALLEY CAJALCO SEWER PROJECT

FIGURE

4

SECTION 6: PERMIT REQUIREMENTS

6.1 County of Riverside Encroachment Permit

Ardurra and EMWD met with the County on October 27, 2022, and January 17, 2023 to discuss the proposed Project. Although the contractor will be responsible for pulling the encroachment permit, early outreach during the design process is intended to minimize comments and streamline this process. Ardurra recommends including the following design elements in the final design and submitting the project to the County for review and comment to facilitate timely approval of the permit:

- Traffic Control Preliminary traffic control conceptual approaches are detailed in Section 5.3. The County has requested EMWD include detailed traffic control plans in the final design submittal for review in advance of awarding the construction contract. The contractor will then be responsible for developing the means and methods to accomplish the work within the prescribed work area, or to submit for approval alternate traffic control plans (at the Contractor's own risk and signed by a California registered engineer) that confine the construction activities to within the defined work area limits.
- Arizona Crossing near Brown Street As discussed in section 5.5.5, the proposed approach at this location is to construct the proposed sewer via open trench. This approach has been preliminarily approved by the County, however, full details and approval will be obtained during the final design and incorporated into the Contract Documents.

6.2 CEQA and Resource Agency Permits

EMWD has contracted with Webb to complete the required environmental documents and resource permit applications. Design related input from Ardurra for completion of these documents will be provided during the preliminary design and final design stages as necessary.

SECTION 7: OPINION OF PROBABLE CONSTRUCTION COST

7.1 Opinion of Probable Construction Cost

A preliminary design level opinion of probable construction cost has been prepared based on the project description and assumptions presented in this report. A breakdown of the cost is included in Appendix L. The total opinion of probable construction cost for the proposed project is \$8.5/=8M and includes a 30% contingency given the preliminary nature of the project description and an additional 10% escalation factor to reflect the mid-point of construction.

SECTION 8: PROJECT SCHEDULE

8.1 Proposed Final Design and Construction Schedule

A proposed schedule is included in Appendix M including final design and construction. Major milestones are noted below.

 Final Preliminary Design Report Submittal 	March 2023
60% Design Submittal	June 2023
90% Design Submittal	July 2023
 100% Design Submittal 	August 2023
Final Contract Documents	October 2023
County of Riverside ROW Permit	October 2023
CEQA Compliance	November 2023
 NPDES Discharge Permit (if applicable) 	December 2024
Completion of Bid/Award	January 2024
Construction Completion	November 2025

APPENDIX A

Mead Valley Cajalco Sewer Project Alternative Alignment Analysis Technical Memorandum

EASTERN MUNICIPAL WATER DISTRICT TECHNICAL MEMORANDUM

Date:	December 4, 2022 – Draft January 19, 2023 - Final
Subject:	Mead Valley Cajalco Sewer Project Alternative Alignment Analysis
Prepared By: Reviewed By:	Jamie Fagnant, P.E. Anders Egense, P.E., Ryan Huston, P.E.

PURPOSE

The purpose of this technical memorandum is to identify potential alternative alignments for the proposed Mead Valley Cajalco Sewer, develop ranking criteria, and apply the criteria to each alternative to identify the preferred alignment. This memorandum addresses only the alternative alignment analysis in order to support the development of the formal Preliminary Design Report and associated 30% design drawings.

BACKGROUND

The Mead Valley Cajalco Sewer Project will extend Eastern Municipal Water District's (EMWD or District) collection system in Mead Valley. The goals of the Mead Valley Cajalco Sewer Project is to:

- extend sewer service to and promote economic development of the disadvantaged community of Mead Valley,
- redirect existing flow to the trunk sewer in order to decommission the Clark Street Lift Station, and
- provide additional flow to Western Municipal Water District's (WMWD) Western Water Recycling Facility in order to produce additional recycled water.

A new trunk sewer is proposed along Cajalco Road from Day Street to Carpinus Drive where it would connect to Western Municipal Water District's (WMWD) existing 15" sewer. Proposed alternative alignments, location of the Clark Lift Station and the target service area are shown in the attached Figure 1.

A portion of the project is within the mapped FEMA 100 year flood plain. Cajalco Creek, an ephemeral waterway extends along part of Cajalco Road. Two Arizona crossings convey flow. These are located on Cajalco Road west of Brown Street (within Alignment 1), and on Wells Street east of Alexander Street (within Alignment 2). Riverside County is in the planning stages of the Cajalco Road Widening Project. The Cajalco Road Widening Project will widen Cajalco Road, raise the grade of Cajalco Road to remove the traveled way from the 100 year flood plain, and channelize the overland portions of Cajalco Creek along the Cajalco Road corridor. During the development of this technical memorandum, Ardurra and the District met with Riverside County to discuss the proposed road widening project and the impact to the existing Arizona crossings. As a follow-up to the meeting, Riverside County indicated they would

allow the District to trench through and repair the Arizona crossing(s) to install the new trunk sewer, thus avoiding the risk and cost associated with trenchless construction under the existing Arizona crossing(s). Application of the alignment evaluation criterion was done with the understanding that the installation of the new trunk sewer under the existing Arizona crossing(s) would be undertaken via open trench.

ALTERNATIVE ALIGNMENTS

Ardurra has identified three potential alternative alignments as shown in Figure 1 and described below. Alternatives start at a new upstream manhole at Day Street and Cajalco Road and end at the downstream connection point, connecting to an existing WMWD 15" stub out at Carpinus Drive and Cajalco Road. The proposed sewer would intercept existing flow at Clark Street and Cajalco Road, where the existing Clark Street Lift Station is located, and convey it to the west. East of Clark Street the sewer would service future developments along Cajalco Road. For the purposes of comparing identified alternatives within this technical memorandum it is assumed that the sewer will be 12" downstream of the Clark Street and 8" upstream of Clark Street. Proposed sizing will be finalized in the full preliminary design report for the selected alignment.

- Alternative 1 This alternative extends from Day Street to Carpinus Drive, approximately 12,630 feet within Cajalco Road. This alignment is the most direct route between connection points and would maximize slope in the new alignment. This alignment would trench through the existing Arizona crossing just west of Brown Street.
- Alternative 2 This alternative is approximately 13,490 linear feet and is similar to Alternative
 1, however, it turns north at Brown Street, east on Wells Street, and south on Alexander Street
 to rejoin Cajalco Road and continue west to Carpinus Drive. The main benefit of this alignment
 would be the avoidance of impacts on the existing Arizona crossing on Cajalco Road, just west of
 Brown Street. This alignment would impact an Arizona crossing on Wells Street, just east of
 Alexander Street.
- Alternative 2A This alternative is similar to Alternative 2A (with a total length of 13,490 ft), except after turning north at Brown Street and east on Wells Street, it would turn south on Mead Street to rejoin Cajalco Road. This alignment was identified in discussions with District Staff as a potential alignment that not require trenching through an existing Arizona crossing. However, Mead Street between Wells and Cajalco Roads is an undeveloped right-of-way with a double track dirt path that does not stay within public right-of-way. The actual right-of-way contains several mature trees and is proposed to be crossed in the future with an unlined earthen channel to convey the FEMA 100-year flood flows. Due to potential environmental impacts and the future liability of a sewer installation under an unlined flood channel, this alternative was not carried forward.
- Alternative 3 This alternative is located within Souder Street and Elmwood Street and would bypass Cajalco Road from Day Street to Una Street. This alternative requires that collector sewers would need to be installed along Cajalco Road in order to provide service to the target service area from Brown Street to Day Street. This alternative would comprise approximately 12,610 feet of 12" trunk sewer and an additional 4,570 feet of 8" collector sewer.

ALIGNMENT EVALUATION CRITERIA DEVELOPMENT

A list of criteria was developed and reviewed with District staff. The criteria and methodology for applying them are detailed below.

Hydraulics – Does the project meet the District's requirements for sewer capacity as outlined in the EMWD Guidelines for Sewer System Plans? Weighted value of 10%. Design flows were provided in the Draft Technical Memorandum titled Mead Valley Sewer Diversion Hydraulic Analysis prepared by Dudek for WMWD. The District's capacity requirements are outlined below.

- Convey the Peak Wet Weather Flow (PWWF), 0.361 MGD, at a maximum d/D (depth to Diameter ratio) of 0.5 for sewers 12" and smaller and 0.75 for sewers 15" and larger
- Provide a minimum velocity of 2 fps (feet per second) at Peak Dry Weather Flow (PDWF), 0.299 MGD
- Allow for minimum slopes as shown in the below table:

Size	Minimum slope
8″	0.0040
10"	0.0032
12″	0.0024
15″	0.0016
18″	0.0014

A rating of 5 indicates the alignment meets the above criteria. A rating of 1 indicates the alignment does not meet the above criteria. A rating of 3 indicates the alignment meets the above criteria but would require depths exceeding 20 feet to do so. Additionally, a 1 rating would be applied to an alignment that would require collector sewers to provide service to the target service area as the low flow in the collector sewers and increased turbulence where these flows would connect to the main line is less hydraulically optimal.

Utilities (Existing & Future) – Are there any potential existing or future utility conflicts along the alignment? Weighted value of 10%. The Riverside County Cajalco Road Widening Project includes multiple new drainage crossings along Cajalco Road. A 5 rating indicates the alignment has very few existing utility conflicts. A 3 rating indicates existing and/or proposed utilities (including the proposed drainage crossings along Cajalco Road) in the project corridor but not in conflict with the proposed design. A 1 rating indicates a very congested utility corridor with a high potential for utility relocations and/or modifications to the proposed line and grade to avoid utility conflicts.

Right-of-Way – Is the alternative located in public right-of-way or existing easements? Weighted value of 10%. A 5 rating indicates the alignment is within public right-of-way, that the right-of-way is paved, and that no immediate improvements to the right-of-way are proposed. A 3 rating indicates that less than 50% of the alignment would require additional permanent and/or temporary easements. A 1 rating indicates that over 50% of the alignment will require easements.

Residential/Business Access Impacts – What is the extent of impacts to the residents and/or businesses? Weighted value of 10%. A 5 rating indicates the project does not cross directly in front of residences or disrupt the traffic flow into or out of businesses. If best management practices can

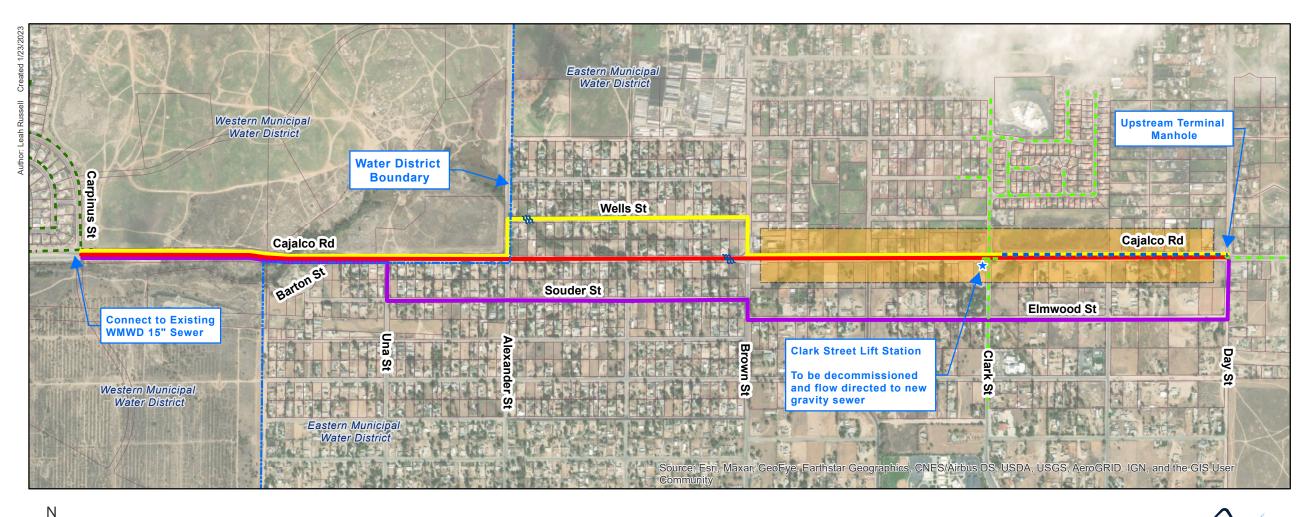
maintain traffic to businesses, the alignment would still receive a 5 rating. A 3 rating indicates the project is in close proximity to residences and businesses and may temporarily impact ingress to parcels containing businesses. A 1 rating indicates the alignment crosses directly in front of residences on residential streets for over 50% of the alignment thereby causing significant impacts to residents.

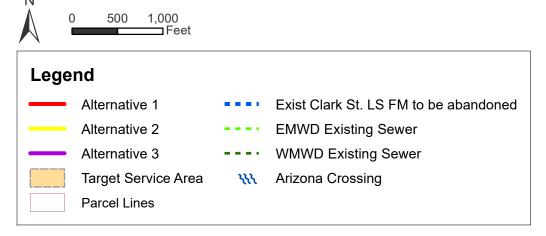
Traffic Impacts (Construction) – Are there significant impacts to traffic during construction? Weighted value of 10%. A 5 rating indicates the project occurs along lightly traveled roadways. A 3 rating indicates the project occurs may be located within a major arterial road, but proper traffic control and reduced working hours could be implemented to minimize traffic disruptions. A 1 rating indicates the project occurs within a major arterial road without adequate roadway width to allow for continued flow of traffic and would therefore require night work to minimize traffic impacts.

Permitting – What permits, including regulatory are required? Weighted value of 5%. A 5 rating indicates basic encroachment permits are required for construction. A 3 rating indicates additional regulatory permitting is required including Army Corps of Engineers or California Department of Fish and Wildlife. A 1 rating indicates that regulatory permitting would be extremely difficult and costly to obtain.

Constructability/Risk – Will the alignment require sustained construction within areas with significant groundwater, potential for hard rock excavation, and/or sewer depths exceeding 20 ft in depth Weighted value of 10%. Although the geotechnical investigation is not yet completed, there are numerous granitic outcroppings in the project area. Additionally, groundwater monitoring wells exist at the intersection of Brown Street and Cajalco Road. At the time of preparation of this draft memorandum it is assumed that the three alternatives under evaluation have similar potential for rock and groundwater. A 5 rating indicates the alignment is expected to have no more than 25% of the length within areas with known high, or fluctuating to high groundwater, not expected to contain hard rock excavation, and sewer depths would not exceed 20 ft in depth. A 3 rating indicates the alignment may have between 25% to 50% of the length within areas with known high, or fluctuations. A 3 rating would also require the sewer depth to be less than 20 ft. A 1 rating indicates over half the alignment is subject to groundwater, hard rock, and/or construction depths would be greater than 20 ft.

Operations & Maintenance – Will the alignment provide self-cleansing velocity at PDWF, involve manholes located outside of heavily traveled roadways (except for west of Barton Street on Cajalco which is common to all alternatives), and not require collector sewers to service the targeted service area (which would require additional cleaning). Weighted value of 15%. A 5 rating indicates the alignment would meet self-cleansing velocity at PDWF, site manholes outside of heavily traveled roadways, and not require collector sewers to service the targeted service area. A 3 rating indicates the alignment would meet self-cleansing velocity at PDWF but would entail manholes within heavily traveled roadways in a manner that would generally allow for a simple lane closure to access. A 1 rating indicates the majority of the manholes would be within heavily traveled roadways, would not meet self-cleansing velocity at PDWF, and/or may require collector sewers to service the targeted service area.


Opinion of Probable Construction Cost – A planning level Engineer's Opinion of Probable Construction Cost was developed for each alternative for comparison purposes. Since the geotechnical investigations and report are still in progress, all alternatives are considered to have similar costs regarding rock excavations, dewatering and contaminated soils. This assumption will be updated upon receipt of a detailed Geotechnical Report for the Project. Paving, rock excavation, and dewatering are assumed to be included in the pipeline unit costs. Cost is weighted at 20%. A rating of 5 indicates a cost between \$7 and \$8 million. A rating of 4 indicates a cost between \$8 and \$9 million. A rating of 5 indicates a cost between \$9 and \$10 million.


Alternate Alignments Evaluation Criterion Application

Results of applying the evaluation criterion to the three alignments are shown in the attached Table 1 - Application of Criteria to Alternative Alignments. Of the three alignments, Alternative 1 received the highest overall score. Alignment 1 is the shortest route, minimizes impacts to residences by avoiding narrow residential streets, avoids sewer depths over 20 feet, and has the lowest overall cost. Based on the information presented herein, it is recommended to move forward with the preliminary design utilizing Alignment 1.

ATTACHMENTS

Figure 1 – Alignment Alternatives Table 1 – Application of Criterion to Alternative Alignments Engineer's Opinion of Probable Construction Cost – Alignment 1, 2 & 3

Eastern Municipal Water District

PRELIMINARY DESIGN OF GRAVITY SEWER FOR THE MEAD VALLEY CAJALCO ROAD PROJECT

Figure 1. Alignment Alternatives

Table 1 - Application of Criteria to Alternative Alignments

				Altern	native 1 (Cajalco)		Alternativ	e 2 (Cajalco/Wells)	Alternative 3 (Elmwood/Stouder)			
Criteria	Weight	Scoring	Score	Weighted	Comment	Score	Weighted	Comment	Score	Weighted	Comment	
		Description		Score			Score			Score		
								increased excavation depth				
								required to maintain				
Hydraulics	10%	1-5 (Best)	5	10	most direct route	3	6	minimum slopes	1	2	collector sewers req'd	
Utilities (Existing & Future)	10%	1-5 (Best)	3	6	proposed drainage crossings	3	6	proposed drainage crossings	5	10		
Right-of-Way	10%	1-5 (Best)	5	10	within existing public ROW	5	10	within existing public ROW	5	10	within existing public ROW	
Residential/Business											entirely adjacent to	
Impacts	10%	1-5 (Best)	5	10	minimizes impacts to residents	4	8	some impacts to residents	3	6	residential areas	
Traffic Impacts											mostly within lightly traveled	
(Construction)	10%	1-5 (Best)	3	6	within arterial	3	6	within arterial	4	8	roadways	
Permitting	5%	1-5 (Best)	5	5	std encroachment	5	5	std encroachment	5	5	std encroachment	
Constructability/Risk	10%	1-5 (Best)	3	6	fluctuating groundwater	1	2	fluctuating groundwater, deep installation	1	2	fluctuating groundwater, deep installation	
0&M	15%	1-5 (Best)	3	9	within heavily traveled way	3	9	within heavily traveled way	1	3	collector sewers required	
Sub-Total	80%		32	62		27	52		25	46		
Cost	20%	1-5 (Best)	5	20	\$7.5M	4	16	\$8.1M	3	12	\$9.3M	
Total	100%			82			68			58		

Eastern Municipal Water District Mead Valley Cajalco Sewer Engineer's Opinion of Probable Construction Cost Alternative Analysis Planning Level Cost Opinion - Alternative 1 January 2022

Item	Quantity	Unit	Article	Unit Price	Extension
1	1	LS	Mobilization, Bonds, Permits, Cleanup, and Demobilization	\$270,000	\$270,000
2	1	LS	Excavation Support Systems	\$250,000	\$250,000
3	1	LS	Traffic Control	\$100,000	\$100,000
			Temporary Erosion Control/Storm Water Pollution		
4	1	LS	Prevention Plan (SWPPP)	\$50,000	\$50,000
5	1	LS	Pothole Utilities	\$50,000	\$50,000
6	10,010	LF	Construct new 12-Inch PVC Sewer	\$340	\$3,403,400
7	2619	EA	Construct new 8-inch PVC Sewer	\$290	\$759,510
8	29	EA	Construct new 5' dia MH	\$15,000	\$435,000
				Subtotal	\$5,317,910
			Cont	ingency, 40%	\$2,127,164
				Total	\$7,450,000

The planning level opinions of construction cost presented herein represents Ardurra's judgment as a design-professional and is supplied for the general guidance of the District. Since Ardurra has no control over the cost of labor and material (particularly related to recent inflationary spikes and supply chain issues), or over competitive bidding or market conditions, Ardurra does not guarantee the accuracy of such opinions as compared to contractor bids or actual cost. This opinion of cost does not include estimates for other project elements including, but not limited to, design, inspection, construction management, District administration, environmental compliance, and right of way acquisition.

Eastern Municipal Water District Mead Valley Trunk Sewer Engineer's Opinion of Probable Construction Cost Alternative Analysis Planning Level Cost Opinion - Alternative 2 January 2022

Item	Quantity	Unit	Article	Unit Price	Extension
1	1	LS	Mobilization, Bonds, Permits, Cleanup, and Demobilization	\$289,000	\$289,000
2	1	LS	Excavation Support Systems	\$250,000	\$250,000
3	1	LS	Traffic Control	\$100,000	\$100,000
			Temporary Erosion Control/Storm Water Pollution		
4	1	LS	Prevention Plan (SWPPP)	\$50,000	\$50,000
5	1	LS	Pothole Utilities	\$50,000	\$50,000
6	10,866	LF	Construct new 12-Inch PVC Sewer	\$350	\$3,803,100
7	2,619	EA	Construct new 8-inch PVC Sewer	\$290	\$759,510
8	29	EA	Construct new 5' dia MH	\$15,000	\$435,000
9	2	EA	Construct new 6' dia MH (over 20')	\$25,000	\$50,000
				Subtotal	\$5,786,610
			Cor	tingency, 40%	\$2,314,644
				Total	\$8,101,254

The planning level opinions of construction cost presented herein represents Ardurra's judgment as a design-professional and is supplied for the general guidance of the District. Since Ardurra has no control over the cost of labor and material (particularly related to recent inflationary spikes and supply chain issues), or over competitive bidding or market conditions, Ardurra does not guarantee the accuracy of such opinions as compared to contractor bids or actual cost. This opinion of cost does not include estimates for other project elements including, but not limited to, design, inspection, construction management, District administration, environmental compliance, and right of way acquisition.

Eastern Municipal Water District Mead Valley Trunk Sewer Engineer's Opinion of Probable Construction Cost Alternative Analysis Planning Level Cost Opinion - Alternative 3 January 2022

Item	Quantity	Unit	Article	Unit Price	Extension
1	1	LS	Mobilization, Bonds, Permits, Cleanup, and Demobilization	\$332,000	\$332,000
2	1	LS	Excavation Support Systems	\$250,000	\$250,000
3	1	LS	Traffic Control	\$40,000	\$40,000
4	1	LS	Temporary Erosion Control/Storm Water Pollution Prevention Plan (SWPPP)	\$50,000	\$50,000
5	1	LS	Pothole Utilities	\$70,000	\$70,000
6	12,612	LF	Construct new 12-Inch PVC Sewer	\$320	\$4,035,840
7	4,570	EA	Construct new 8-inch PVC Sewer	\$270	\$1,233,900
8	37	EA	Construct new 5' dia MH	\$15,000	\$555,000
9	2	EA	Construct new 6' dia MH (over 20')	\$25,000	\$50,000
				Subtotal	\$6,616,740
			Conti	ngency, 40%	\$2,646,696
				Total	\$9,263,436

The planning level opinions of construction cost presented herein represents Ardurra's judgment as a design-professional and is supplied for the general guidance of the District. Since Ardurra has no control over the cost of labor and material (particularly related to recent inflationary spikes and supply chain issues), or over competitive bidding or market conditions, Ardurra does not guarantee the accuracy of such opinions as compared to contractor bids or actual cost. This opinion of cost does not include estimates for other project elements including, but not limited to, design, inspection, construction management, District administration, environmental compliance, and right of way acquisition.

APPENDIX B

Mead Valley Sewer Diversion Hydraulic Analysis Technical Memorandum

TECHNICAL MEMORANDUM

То:	Ryan Shaw, Western Municipal Water District (WMWD)
From:	Elizabeth Caliva, Dudek; Jenny Li, Dudek
Subject:	Mead Valley Sewer Diversion Hydraulic Analysis
Date:	October 17, 2022
cc:	Tony Pollak, WMWD; Laura Barraza, EMWD; Daniel Meacham, EMWD
Attachment(s):	EMWD Wastewater Design Criteria

Eastern Municipal Water District (EMWD) proposes to divert all, or a fraction, of the flows currently being served by EMWD's Clark Street Lift Station (LS) to Western Municipal Water District's (WMWD) sewer collection system. This includes flows generated by planned septic to sewer conversion projects in Mead Valley. By diverting the additional sewer flows to WMWD, EMWD may avoid a costly relocation of its existing Clark St LS and associated infrastructure. The following technical memorandum evaluates the impacts of the proposed sewer diversion to WMWD's collection system, especially with regards to the CIP projects previously defined in Western's 2021 Riverside Facilities Master Plan (2021 FMP).

As shown in **Figure 1**, sewer flows from up to approximately 136 acres of various land use types within EMWD's service area may be diverted to the existing WMWD 15-inch gravity main in Cajalco Rd, just upstream of the Cajalco LS. Included in the total diversion area is a 52-acre region of predominantly vacant land known as a Mixed Use Policy Area (MUPA), currently zoned for future mixed-use commercial developments.

The memorandum is organized into the following sections:

- Section 1 Sewer Flows Estimation & Loading Describes the estimated sewer flows from the EMWD tributary area that may be diverted into WMWD's collection system.
- Section 2 Pipeline Capacity Analysis Analyzes the capacity of gravity and force mains within WMWD's collection system downstream of the added EMWD sewer flows.
- Section 3 Lift Station Capacity Analysis Analyzes the capacity of lift stations downstream of the added EMWD sewer flows.
- Section 4 Treatment Plant Analysis Analyzes the capacity of the Western Water Recycling Facility (WWRF) with the addition of EMWD sewer flows.
- Section 5 Conclusion & Recommendations Recommends any improvements to WMWD's collection system
 resulting from the added EMWD sewer flows, beyond what was previously defined in the 2021 FMP.

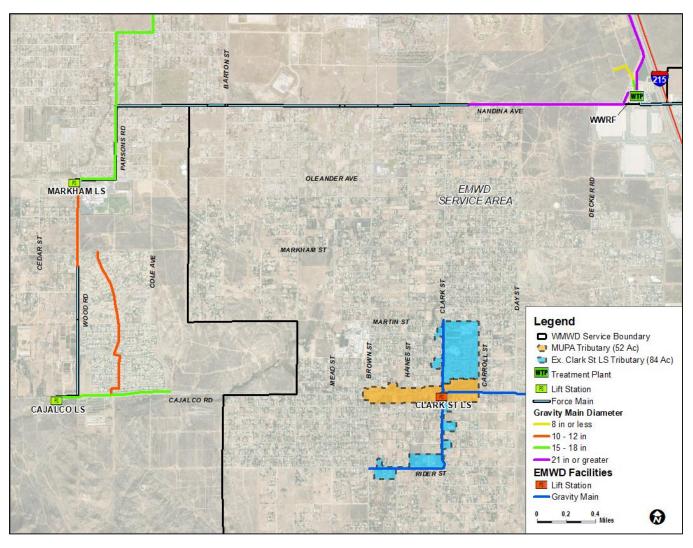


Figure 1: Location Map

1 Sewer Flows Estimation & Loading

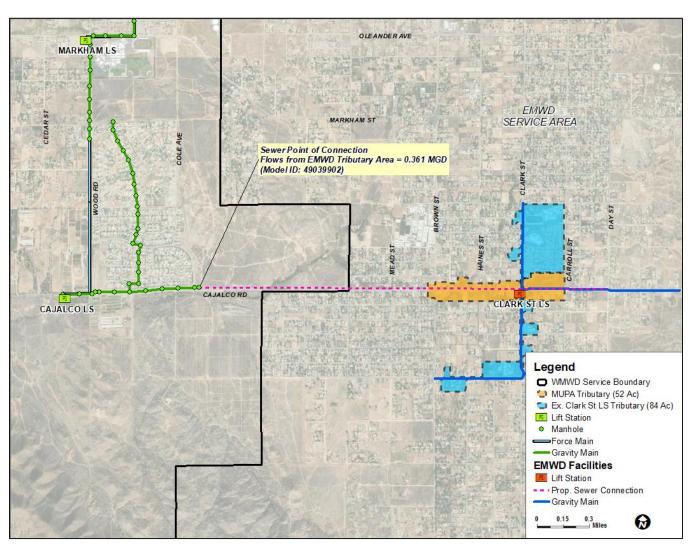
EMWD wastewater flow factors (Attachment A) and existing indoor water use data were used to initially estimate sewer flows generated by the tributary areas shown in Figure 1. These sewer flow estimates were compared to those estimated using WMWD sewer flow factors. The EMWD estimates for peak design flow resulted in slightly higher estimates (total peak design flow of 0.361 MGD vs. 0.343 MGD); therefore, the EMWD estimates were utilized for the capacity analysis. In addition to the MUPA tributary area, the existing Clark St LS tributary area is comprised of medium density residential, school, and public facility land use types in varying stages of development. A portion of the existing Clark St LS tributary area is currently on septic, including the schools and some public facilities.

Table 1 presents the estimated total sewer flows generated by the EMWD tributary area in Mead Valley. In the following sections the total peak design flow, which is equivalent to the peak dry weather flow (PDWF) multiplied by a safety factor of 1.2, is used to evaluate the capacity of gravity mains and lift stations.

Land Use Type	Status	Area (Ac)	Unit Sewer Flow Factor	Average Dry Weather Flow (gpd)	Peak Dry Weather Flow ¹ (gpd)	Peak Design Flow ² (gpd)
School	Developed (On Septic)	41	N/A ³	6,735 ³	19,329	23,195
Public Facility	Developed (On Septic)	11	N/A ³	4,424 ³	12,697	15,236
Medium Density Residential (138 DUs)	Developed (111 DU), Undeveloped (27 DU)	32	235 gpd/EDU ⁴	32,430	93,074	111,689
Mixed Used Policy Area (MUPA)	Undeveloped	52	235 gpd/EDU at 5 EDU/acre ⁴	61,100	175,357	210,428
	Total:	136	-	104,689 gpd (0.105 MGD)	299,015 gpd (0.299 MGD)	360,548 gpd (0.361 MGD)

Table 1. Estimated Sewer Flows from EMWD Tributary Area (Mead Valley)

Notes:


Peak dry weather flow (PDWF) calculated as the average dry weather flow (ADWF) multiplied by a diurnal peaking factor of 2.87 where ADWF is less than or equal to 0.1 MGD. Where ADWF is greater than 0.1 MGD, the following peaking factor equation is applied: PF = 2.13 x Q_{ADWF}^{0.13}. Reference Appendix 3A of EMWD 2015 Wastewater Collection System Master Plan Update.

² Peak Design Flow calculated as the PDWF multiplied by an additional safety factor of 1.2 to simulate PWWF. Reference Appendix 3A of EMWD 2015 Wastewater Collection System Master Plan Update.

³ Values based on historical indoor water usage data assuming 100% return rate.

⁴ Unit sewer flow factors per wastewater design criteria provided by EMWD.

As shown in **Figure 2**, EMWD will construct and maintain a sewer interconnection between the proposed tributary area and the easternmost WMWD manhole in Cajalco Rd, located at the intersection of Cajalco Rd and Carpinus Dr. After discharging to the 15-inch gravity main in Cajalco Rd, the diverted EMWD sewer flows will enter the Cajalco LS in conjunction with existing WMWD flows. From the Cajalco LS, flows travel directly downstream through the Markham LS before entering the Western Water Recycling Facility (WWRF).

The pipeline capacity analysis in Section 2 assumes the total peak design flow of 0.361 MGD estimated in Table 1 is applied to the manhole at Cajalco Rd and Carpinus Dr (model ID: 49039902).

2 Pipeline Capacity Analysis

The following subsections evaluate the capacity of WMWD's gravity and force mains downstream of the proposed EMWD sewer interconnection under existing, Near-Term, and Ultimate scenarios.

The 2021 FMP evaluated WMWD's collection system under peak wet weather flow (PWWF) conditions. Therefore, each of the following model scenario analyses considers the impact of the added EMWD sewer flows on WMWD's collection system under PWWF conditions.

The latest WMWD InfoSewer model was updated with the additional peak design flow of 0.361 MGD from EMWD applied to the manhole specified in Figure 2. The existing "DAUCHY_PWWF" model pattern was applied to the PDWF load. Per Section 3.4.1.1 of the 2021 FMP, the size and land use of the Dauchy LS drainage basin most closely resembles that of the Cajalco LS and Markham LS. In the absence of viable data from the Cajalco LS and Markham LS flow meters, the Dauchy LS flow pattern was assumed for those basins.

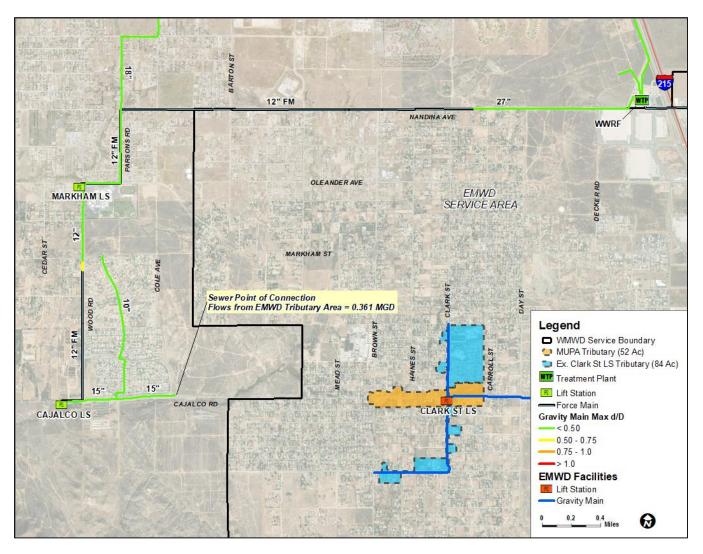
Under PWWF conditions, WMWD design criteria state the maximum depth-to-diameter ratio (d/D) of a sewer gravity main shall not exceed 0.5 ft/ft in pipes with diameter less than 15-inch or 0.75 ft/ft in pipes with diameter equal to or greater than 15-inch. However, a d/D of 0.90 or greater is required to "trigger" a pipeline improvement project. Additionally, the maximum allowable velocity of force mains within WMWD's collection system is 7 fps under all operating conditions.

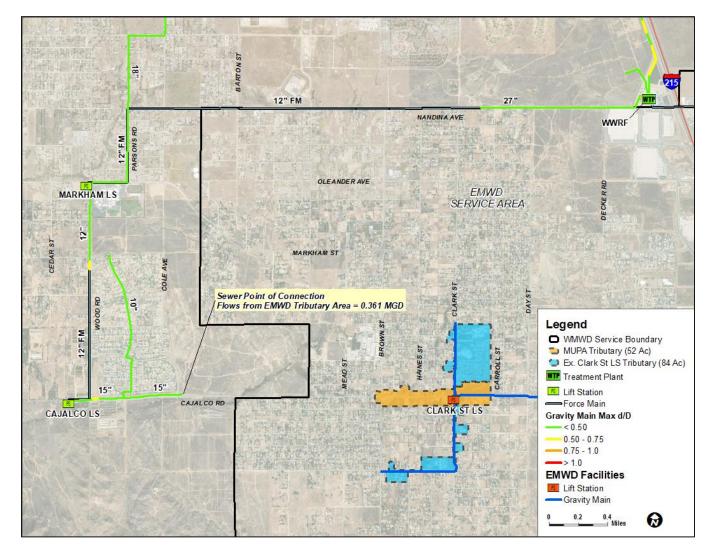
2.1 Existing PWWF Analysis

Model scenario "CAL_PWWF" was used to evaluate the impact of the total sewer flows diverted from EMWD on WMWD's existing collection system. The results shown in **Figure 3** indicate that under existing PWWF conditions, no gravity mains downstream of the proposed EMWD sewer point of connection are projected to violate WMWD design criteria for maximum d/D ratios.

A short segment of 12-inch gravity main just upstream of the Cajalco LS force main exhibits a maximum d/D of greater than 0.5 ft/ft, but less than 0.75 ft/ft. However, the 2021 FMP already identified the same gravity main as exceeding maximum d/D design criteria under existing PWWF conditions, without the additional flows from EMWD. Furthermore, the pipe segment does not meet the established "trigger" criteria of flowing at 90% full that would result in an upsizing improvement project.

Lastly, the velocities of force mains downstream of the EMWD sewer point of connection are not projected to exceed 7 fps. Therefore, under existing PWWF conditions no improvements to WMWD's sewer pipeline system are anticipated to be required as a result of the additional EMWD sewer flows.




Figure 3: Gravity Main Capacity Analysis under Existing PWWF Conditions with EMWD Sewer Flows

2.2 Near-Term (2030) PWWF Analysis

Model scenario "2030_PWWF" was used to evaluate the impact of the total sewer flows diverted from EMWD on WMWD's Near-Term collection system. The results shown in **Figure 4** indicate that under Near-Term PWWF conditions, no gravity mains downstream of the proposed EMWD sewer point of connection are projected to violate WMWD design criteria for maximum d/D ratios.

Furthermore, the velocities of force mains downstream of the EMWD sewer point of connection are not projected to exceed 7 fps. Therefore, under Near-Term PWWF conditions no improvements to WMWD's sewer pipeline system are anticipated to be required as a result of the additional EMWD sewer flows.

Figure 4: Gravity Main Capacity Analysis under Near-Term PWWF Conditions with EMWD Sewer Flows



2.3 Ultimate (2040) PWWF Analysis

Model scenario "2040_PWWF" was used to evaluate the impact of the total sewer flows diverted from EMWD on WMWD's Ultimate collection system loading projections. The results shown in **Figure 5** indicate that under projected Ultimate PWWF conditions, no gravity mains downstream of the proposed EMWD sewer point of connection are anticipated to violate WMWD design criteria for maximum d/D ratios.

Furthermore, velocities of force mains downstream of the EMWD sewer point of connection are not projected to exceed 7 fps. Therefore, under Ultimate PWWF conditions no improvements to WMWD's sewer pipeline system are anticipated to be required as a result of the additional EMWD sewer flows.

Figure 5: Gravity Main Capacity Analysis under Ultimate PWWF Conditions with EMWD Sewer Flows

DUDEK

3 Lift Station Analysis

The following subsections evaluate the capacity within the Cajalco and Markham lift stations (LS) downstream of the proposed EMWD sewer interconnection under existing, Near-Term, and Ultimate conditions.

WMWD requires the firm capacity of any lift station within its system be greater than the influent PWWF. Firm capacity is the pumping capacity of a lift station with its largest pump taken out of service. The risk of sewage backing up into the gravity collection system or overflowing at the lift station increases when a lift station's firm capacity is less than the peak inflow.

3.1 Existing LS Capacity Analysis

The 2021 FMP compared the peak wet weather inflow measured at each existing lift station to the firm capacity of the lift station. **Table 2** presents the existing peak wet weather inflow and capacity of the Cajalco and Markham LSs as summarized in Table 8-2 of the 2021 FMP, as well as the revised inflow and capacity after addition of the total peak LS design flow diverted from EMWD (0.361 MGD).

The 2021 FMP identified the Markham LS as capacity deficient under existing peak inflow conditions. As such, the 2021 FMP recommended that WMWD increase the firm capacity of Markham LS from 1.44 MGD to 2.1 MGD by replacing both existing pumps with two new pumps, each capable of 1,500 gpm design flow. Since the Markham LS pumps operate on variable frequency drives (VFD), an expansion of the existing wet well structure was determined to not required.

	Capacity (gpm)		Total Capacity		Firm Capacity		Existing PWWF - Without	Capacity Deficient	Existing PWWF - With	Capacity Deficient
Lift Station	Pump No. 1	Pump No. 2	(gpm)	(MGD)	EMWD Wi		Without EMWD	EMWD ¹ (MGD)	With EMWD	
Cajalco	1,000	1,000	2,000	2.88	1,000	1.44	0.13	No	0.77	No
Markham	1,000	1,000	2,000	2.88	1,000	1.44	1.55 ²	Yes	2.05	Yes

Table 2. Cajalco & Markham LS Capacity Analysis - Existing PWWF

Notes:

Results obtained from latest InfoSewer model after addition of total peak design flow diverted from EMWD tributary area (0.361 MGD) as calculated in Table 1.

² Existing PWWF at Markham LS differs from Table 8-2 of 2021 FMP due to InfoSewer model updates since completion of the 2021 FMP.

As seem in Table 2, the firm capacity of the Cajalco LS is greater than its anticipated inflow both before and after addition of the EMWD tributary area flows. Therefore, the Cajalco LS is not capacity deficient under existing peak inflow conditions.

Meanwhile, the capacity deficit of the Markham LS increases upon addition of the EMWD tributary area flows. However, the overall peak inflow at Markham LS remains below the recommended improved firm capacity of 2.1 MGD as proposed in the 2021 FMP. Therefore, no modifications to the Markham LS improvement project originally recommended in the 2021 FMP are anticipated to be required under existing peak inflow conditions.

3.2 Near-Term (2030) LS Capacity Analysis

Table 3 presents the Near-Term peak wet weather inflow and capacity of the Cajalco and Markham LS as summarized in Table 8-5 of the 2021 FMP, as well as the revised inflow and capacity after addition of the total peak LS flow diverted from EMWD.

	Capacity (gpm)		Total Capacity		Firm Capacity		Near- Term PWWF -	Capacity	Near- Term PWWF -	Capacity
Lift Station	Pump No. 1	Pump No. 2	(gpm)	(MGD)	(gpm)	(MGD)	Without EMWD (MGD)	Deficient Without EMWD	With EMWD¹ (MGD)	Deficient With EMWD
Cajalco	1,000	1,000	2,000	2.88	1,000	1.44	0.59	No	1.24	No
Markham	1,000	1,000	2,000	2.88	1,000	1.44	1.87 ²	Yes	2.08	Yes

Table 3. Cajalco & Markham LS Capacity Analysis - Near-Term (2030) PWWF

Notes:

Results obtained from latest InfoSewer model after addition of total peak design flow diverted from EMWD tributary area (0.361 MGD) as calculated in Table 1.

Near-Term PWWF at Markham LS differs from Table 8-5 of 2021 FMP due to InfoSewer model updates since completion of the 2021 FMP.

As seen in Table 3, the firm capacity of the Cajalco LS is greater than its anticipated inflow both before and after addition of the EMWD tributary area flows. Therefore, the Cajalco LS is not capacity deficient under Near-Term peak wet weather conditions.

As in the existing scenario, the peak inflow at Markham LS after addition of the EMWD tributary area flows remains below the recommended improved firm capacity of 2.1 MGD as proposed in the 2021 FMP. The peak inflow at Markham LS is not anticipated significantly increase between the existing and Near-Term scenarios due to the upstream Cajalco LS being a fixed speed pump and generating the same peak outflow in both situations, even as average flows increase.

3.3 Ultimate (2040) LS Capacity Analysis

Table 4 presents the Ultimate peak wet weather inflow and capacity of the Cajalco and Markham LS as summarized in Table 8-8 of the 2021 FMP, as well as the revised inflow and capacity after addition of the total peak LS flow diverted from EMWD.

	Capacity (gpm)		Total Capacity		Firm Capacity		Ultimate PWWF - Without	Capacity Deficient	Ultimate PWWF - With	Capacity Deficient	
Lift Station	Pump No. 1	Pump No. 2	(gpm)	(MGD)	(gpm)	(MGD)	EMWD (MGD)	Without EMWD	EMWD ¹ (MGD)	With EMWD	
Cajalco	1,000	1,000	2,000	2.88	1,000	1.44	0.67	No	1.32	No	
Markham	1,000	1,000	2,000	2.88	1,000	1.44	2.43²	Yes	2.62	Yes	

Table 4. Cajalco & Markham LS Capacity Analysis - Ultimate (2040) PWWF

Notes:

Results obtained from latest InfoSewer model after addition of total peak design flow diverted from EMWD tributary area (0.361 MGD) as calculated in Table 1.

² Ultimate PWWF at Markham LS differs from Table 8-8 of 2021 FMP due to InfoSewer model updates since completion of the 2021 FMP.

As seen in Table 4, the firm capacity of the Cajalco LS is greater than its anticipated inflow both before and after addition of the EMWD tributary area flows. Therefore, the Cajalco LS is not capacity deficient under Ultimate peak wet weather conditions.

Given the uncertainty of projected developments beyond 2040, it is not recommended that WMWD increase the firm capacity of Markham LS by any more than what is required by the Near-Term scenario. Instead, WMWD should regularly measure inflows at the Markham LS as the Ultimate scenario year approaches and evaluate if further improvements to Markham LS are necessary.

4 Treatment Plant Analysis

The following evaluates the capacity of the Western Water Recycling Facility (WWRF) under existing, Near-Term, and Ultimate conditions. Treatment plant capacity is evaluated using average dry weather flows (ADWF). The current treatment capacity of WWRF is 3.0 MGD. Per the 2021 FMP, WMWD should begin evaluating options for expansion of WWRF when inflow under average dry weather conditions exceed 75% of the plant's current capacity.

4.1 Existing Treatment Capacity Analysis

The 2021 FMP compared the average dry weather flow at each treatment plant's inlet to the plant's established treatment capacity. The total treatment capacity of WWRF is 3.0 MGD. **Table 5** presents the existing ADWF and remaining available capacity at WWRF as summarized in Table 3-24 of the 2021 FMP, as well as the revised inflow and capacity after addition of the total ADWF diverted from EMWD. Under existing conditions, WWRF has ample capacity to treat anticipated ADWF both before and after addition of the EMWD tributary area flows.

Condition	ADWF (MGD)	Excess Capacity (MGD)	Capacity Utilized
Existing ¹ – Without EMWD	1.15	1.85	38%
Existing – With EMWD ²	1.25	1.75	42%

Table 5. WWRF Treatment Capacity - Existing ADWF

Notes:

¹ Includes 0.35 MGD of flows diverted from City of Riverside. Reference Section 2.4.5 of 2021 FMP.

² Equal to existing ADWF into WWRF (1.15 MGD) plus total ADWF from EMWD tributary area as calculated in Table 1 (0.105 MGD).

4.2 Near-Term (2030) Treatment Capacity Analysis

By 2030, a large light industrial development known as Meridian West Upper Plateau (MWUP) is likely to complete construction within WMWD's service area. MWUP will generate approximately 0.45 MGD of ADWF that will serve as additional inflow to WWRF. **Table 6** presents the projected ADWF and remaining available capacity at WWRF under various development conditions in the Near-Term scenario.

Condition	ADWF (MGD)	Excess Capacity (MGD)	Capacity Utilized
Near-Term ¹ – Without EMWD & MWUP	2.32	0.68	77%
Near-Term – With EMWD ² Only	2.42	0.58	81%
Near-Term – With MWUP ³ Only	2.77	0.23	92%
Near-Term – With EMWD & MWUP	2.87	0.13	96%

Table 6. WWRF Treatment Capacity - Near-Term (2030) ADWF

Notes:

¹ Includes 0.35 MGD of flows diverted from City of Riverside. Reference Section 2.4.5 of 2021 FMP.

 2 Equal to Near-Term ADWF into WWRF (2.32 MGD) plus total ADWF from EMWD tributary area as calculated in Table 1 (0.105 MGD).

³ Equal to Near-Term ADWF into WWRF (2.32 MGD) plus total ADWF from proposed MWUP development (0.45 MGD).

With the addition of both EMWD tributary area and MWUP flows, WWRF approaches but does not exceed its total treatment capacity of 3.0 MGD. At the time of writing, MWUP was in midst of environmental permitting and no definite construction schedule was available, however the developer anticipates full buildout in approximately the next 10 years. Meanwhile, EMWD has already secured government funding and plans to complete construction of the sewer interconnection between its tributary area and WMWD's collection system by mid-2025.

4.3 Ultimate (2040) Treatment Capacity Analysis

Table 7 presents the projected ADWF and remaining available capacity at WWRF under various development conditions in the Ultimate scenario. Upon consideration of WWRF's minimal remaining available capacity in the Near-Term, WMWD staff directed Dudek to remove the additional 0.35 MGD of flows diverted from the City of Riverside from the following Ultimate scenario analysis.

Condition	ADWF (MGD)	Deficit Capacity (MGD)	Capacity Utilized
Ultimate ¹ – Without EMWD & MWUP	3.27	0.27	> 100%
Near-Term – With EMWD ² Only	3.37	0.37	> 100%
Near-Term – With MWUP ³ Only	3.72	0.72	> 100%
Near-Term – With EMWD & MWUP	3.82	0.82	> 100%

Table 7. WWRF Treatment Capacity - Ultimate (2040) ADWF

Notes:

¹ Does not include 0.35 MGD of flows diverted from City of Riverside. Reference Section 2.4.5 of 2021 FMP.

² Equal to Ultimate ADWF into WWRF (3.27 MGD) plus total ADWF from EMWD tributary area as calculated in Table 1 (0.105 MGD).

³ Equal to Ultimate ADWF into WWRF (3.27 MGD) plus total ADWF from proposed MWUP development (0.45 MGD).

Even without either EMWD tributary area or MWUP flows, WWRF is projected to exceed its current treatment capacity of 3.0 MGD at Ultimate Buildout. However, development projects planned for 2040 and beyond are

relatively undefined and subject to change or outright cancellation depending on economic conditions and numerous other factors outside of WMWD's purview. As WWRF approaches its projected Ultimate flow, WMWD will evaluate options to expand the treatment plant or divert excess flows to the City of Riverside.

5 Conclusions & Recommendations

The following summarizes the results of the pipeline, lift station, and treatment plant capacity analysis downstream of the proposed EMWD sewer interconnection.

Pipeline Capacity:

- Through the Ultimate scenario, the gravity and force mains within WMWD's collection system are anticipated to be able to accommodate the total peak flows diverted from EMWD without violating WMWD design criteria.
- No improvements to WMWD's pipeline network as a direct result of the proposed EMWD sewer interconnection are
 recommended at this time.

Lift Station Capacity:

- Through the Ultimate scenario, the Cajalco LS is anticipated to be able to accommodate the total peak flows diverted from EMWD without exceeding its firm capacity.
- As determined in the 2021 FMP, the Markham LS is capacity deficient in the existing scenario. Addition of any EMWD tributary area flows will exacerbate the deficiency.
- The 2021 FMP had recommended increasing the firm capacity of Markham LS from 1.44 MGD to 2.1 MGD to accommodate projected Near-Term flows. If WMWD completes the improvement project as recommended in the 2021 FMP, the Markham LS is anticipated to be able to accommodate the total peak flows diverted from EMWD without exceeding its firm capacity through the Near-Term scenario.

WWRF (Treatment Plant) Capacity:

- Through the Near-Term scenario, WWRF has sufficient capacity to accommodate its total projected inflow including both EMWD tributary area and MWUP flows.
- By the Ultimate Buildout scenario, WWRF will exceed its total treatment capacity regardless of any additional flows diverted from EMWD or produced by MWUP. Before such conditions are met, WMWD should evaluate options for expanding WWRF's treatment capacity or diverting excess flows to neighboring systems like the City of Riverside.

ATTACHMENT A EMWD WASTEWATER DESIGN CRITERIA

Land Use Category	Units	Res Density (DU/acre)	Residential EDU/DU	EDU/Acre	Calculated and rounded Residential Flow gpd/ EDU acre
Agriculture	acre	0		0	
Business Park/Light Industrial	acre	0		5	1200
Business Park/Light Industrial/Warehouse	acre	0		1.25	300
Commercial Office	acre	0		5	1200
Commercial Retail	acre	0		5	1200
Estate Density Residential	DU	0.5	1.5	0.75	350
Heavy Industrial	acre	0		7.5	1800
High Density Residential	DU	12	0.70	8.4	165
Hospital	acre	0		5	1200
Low Density Residential	DU	2	1.3	2.6	310
Medium Density Residential	DU	4.5	1.0	4.5	235
Medium High Density Residential	DU	6	0.9	5.4	210
Mobile Home Park	DU	10	0.65	6.5	150
Mixed Use Policy Area	acre	0		5	1200
Open Space Conservation	acre	0		0	
Open Space Landscape	acre	0		0	
Open Space Recreation	acre	0		0	
Open Space Rural	acre	0.1		0	
Open Space Water	acre	0		0	
OSC	acre	0		0	
Public Facilities	acre	0		5	1200
Public Facilities College	acre	0		5	1200
Public Facilities Elementary School	acre	0		5	1200
Public Facilities High School	acre	0		5	1200
Public Facilities Middle School	acre	0		5	1200
Rural Mountainous	DU	0.1		0	
Rural Residential	DU	0.2		0	
Very High Density Residential	DU	17	0.65	11.1	150
Very Low Density Residential	DU	1		0	

Note:

1. Wastewater flow generation based on 235 gpd/EDU.

2. Business Park/Light Industrial/Warehouse is specific to Moreno Valley and Perris Valley (North) service areas.

3. The following residential uses should be excluded from wastewater flow generation calculations:

Open Space Rural, Rural Mountainous, Rural Residential, and Very Low Density Residential.

4. Estate Denity and Low Density Residential designations are included/excluded from flow generation

calculations on a case-by-case basis.

APPENDIX C

Mead Valley Cajalco Sewer Project Hydraulic Analysis

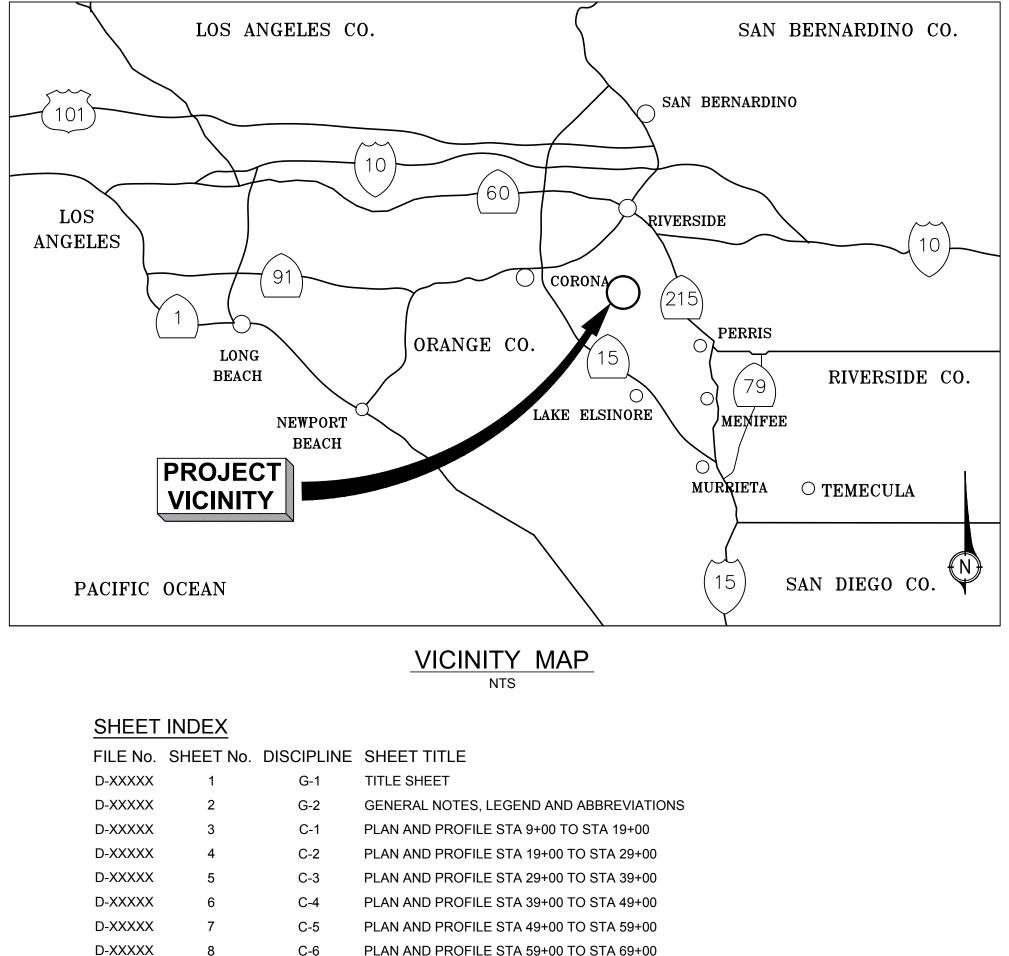
Average Dry Weather Flow from Dudek TM								
		(gpd)	(gpm)					
	School	6735	4.68					
F	ublic Facility	4424	3.07					
Medium Densit	y Residential	32430	22.52					
Total Clark LS I	nfluent Flow	43589	30.2701					

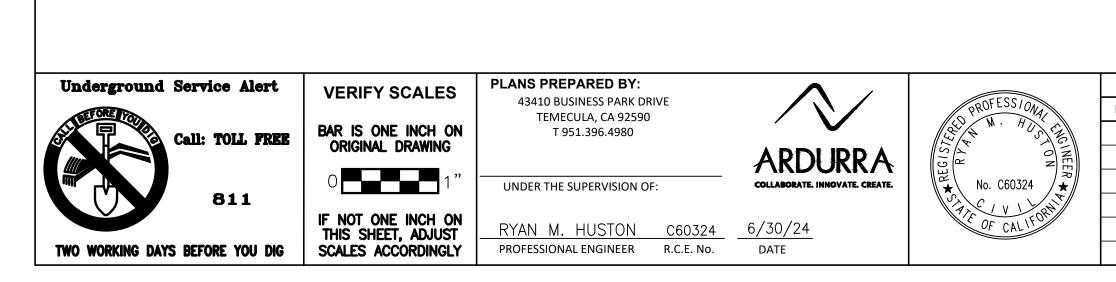
Flow Influent to MH #	Reach No.	Intersection	Trib Area (ac)	Ave Dry Influent to MH (gpd)	Ave Dry in Reach (gpd)	Ave Dry in Reach (gpm)	PDWF in Reach (gpm)	V (PDWF) (fps)	PWWF (gpm)	d/D (PWWF)	Slope	Sewer Size	MH Size	MH Depth	Reach Length (ft)	Rim El	CL EI	Sta
MH No. 31		Day St	0	0									48"	9.1		1686.03	1677.3	13450
	30		6.16		7238	5.03	14.43	1.7	17.31	0.12	0.0143	8"			400			
MH No. 30				7238									48"	10.3		1681.57	1671.6	13050
	29		5.61		13830	9.60	27.56	2.1	33.08	0.16	0.0145	8"			400			
MH No. 29		Robinson St		13830									48"	10.2		1675.62	1665.8	12650
	28		5.55		20351	14.13	40.56	2.3	48.67	0.19	0.0142	8"			400			
MH No. 28		Carroll St		20351									48"	9.3		1669.06	1660.1	12250
	27		9.83		31901	22.15	63.58	2.8	76.30	0.22	0.0178	8"			500			
MH No. 27				31901									48"	10.7		1661.58	1651.2	11750
	26		6.13		39104	27.16	77.94	2.4	93.52	0.29	0.0091	8"			350			
MH No. 26				39104									48"	11.4		1659.04	1648	11400
	25		4.69		44615	30.98	88.92	2.4	106.70	0.32	0.0084	8"			375.28			
MH No. 25		Clark St		88204									48"	12.6		1657.01	1644.86	11024.72
	24		4.93		93997	65.28	187.34	3.0	224.81	0.34	0.0088	10"			444.72			
MH No. 24				93997									48"	11.4		1651.7	1640.7	10580
	23		4.5		99284	68.95	197.88	3.0	237.45	0.35	0.0089	10"			440			
MH No. 23				99284									48"	9.5		1646	1636.9	10140
	22		4.47		104536	72.59	208.35	3.3	250.02	0.34	0.0105	10"			450			
MH No. 22		Haines St		104536									48"	12.5		1644	1632	9690
	21		7.39		113220	78.62	225.65	2.3	270.78	0.36	0.004	12"			430			
MH No. 21				113220									48"	12.2		1642	1630.3	9260
	20		5.33		119482	82.97	238.13	2.4	285.76	0.36	0.0041	12"			440			
MH No. 20		Florence St		119482									48"	13.0		1641.02	1628.5	8820
	19		3.76		123900	86.04	246.94	2.4	296.33	0.37	0.0041	12"			440			
MH No. 19		Brown St		123900									48"	13.1		1639.32	1626.7	8380
	18				123900	86.04	246.94	2.4	296.33	0.37	0.0041	12"			440			
MH No. 18				123900									48"	11.9		1636.34	1624.9	7940
	17				123900	86.04	246.94	2.1	296.33	0.41	0.003	12"			440			
MH No. 17				123900									48"	2.9		1635	1632.6	7500
	16				123900	86.04	246.94	2.1	296.33	0.41	0.003	12"			440			
MH No. 16		Mead St		123900									48"	13.8		1635.64	1622.3	7060
	15				123900	86.04	246.94	2.1	296.33	0.41	0.003	12"			440			
MH No. 15				123900									48"	13.5		1634	1621	6620

Eastern Municipal Water District Mead Valley Cajalco Sewer Project Hydraulic Analysis

Flow Influent to MH #		Intersection	Trib Area (ac)	Ave Dry Influent to MH (gpd)	in Reach (gpd)	Ave Dry in Reach (gpm)	Reach (gpm)	V (PDWF) (fps)	PWWF (gpm)	d/D (PWWF)	Slope	Sewer Size	MH Size	MH Depth	Reach Length (ft)	Rim El	CL EI	Sta
	14				123900	86.04	246.94	2.1	296.33	0.41	0.003	12"			440			
MH No. 14				123900									48"	17.1		1636.31	1619.7	6180
	13				123900	86.04	246.94	2.1	296.33	0.41	0.003	12"			470			
MH No. 13		Alexander St		123900									48"	17.2		1635.02	1618.3	5710
	12				123900	86.04	246.94	2.1	296.33	0.41	0.0029	12"			480			
MH No. 12				123900									48"	16.6		1633.05	1616.9	5230
	11				123900	86.04	246.94	2.1	296.33	0.41	0.0029	12"			480			
MH No. 11				123900									48"	16.0		1631.04	1615.5	4750
	10				123900	86.04	246.94	2.2	296.33	0.4	0.0031	12"			480			
MH No. 10		Una St		123900									48"	14.0		1627.46	1614	4270
	9				123900	86.04	246.94	3.3	296.33	0.3	0.0094	12"			500			
MH No. 9				123900									48"	9.2		1618.03	1609.3	3770
	8				123900	86.04	246.94	3.1	296.33	0.31	0.0083	12"			60			
MH No. 8		Barton St		123900									48"	9.1		1617.39	1608.8	3710
	7				123900	86.04	246.94	2.8	296.33	0.34	0.0061	12"			460			
MH No. 7				123900									48"	10.5		1616	1606	3250
	6				123900	86.04	246.94	3.3	296.33	0.29	0.011	12"			300			
MH No. 6				123900									48"	12.1		1614.29	1602.7	2950
	5				123900	86.04	246.94	2.7	296.33	0.34	0.0057	12"			300			
MH No. 5				123900									48"	11.2		1611.65	1601	2650
	4				123900	86.04	246.94	4.1	296.33	0.25	0.0194	12"			360			
MH No. 4				123900									48"	11.5		1604.97	1594	2290
	3				123900	86.04	246.94	3.8	296.33	0.27	0.0155	12"			380			
MH No. 3				123900									48"	9.9		1597.48	1588.1	1910
	2				123900	86.04	246.94	3.8	296.33	0.26	0.016	12"			400			
MH No. 2				123900									48"	11.6		1595	1583.9	1510
	1				123900	86.04	246.94	3.4	296.33	0.29	0.0048	12"			380.38			
MH No. 1		Carpinus Dr		123900				_					48"	12.8		1592	1579.67	1129.62

Total Quantities

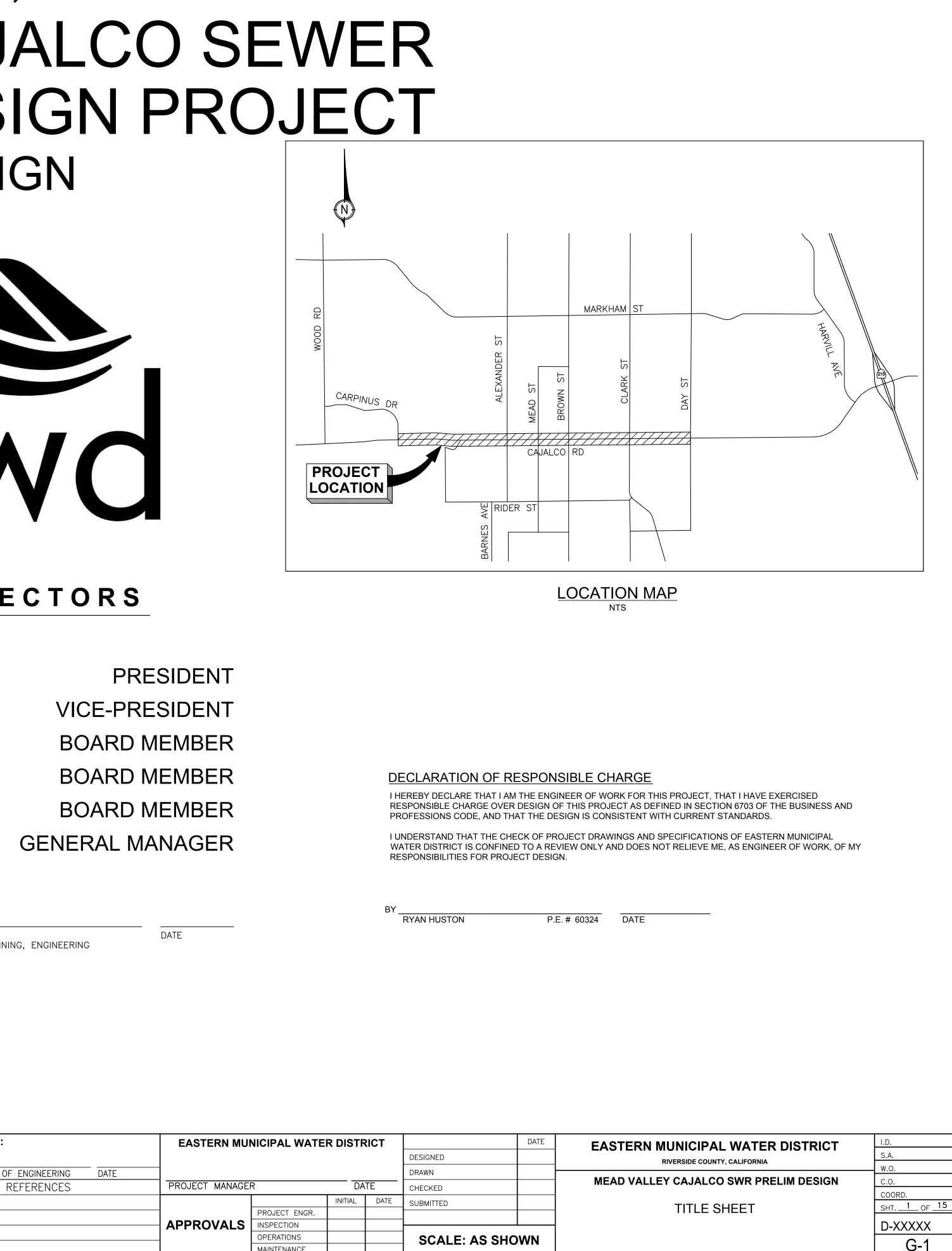

12" PVC	8560.38
10" PVC	1334.72
8" PVC	2425.28
Total Length	12320.38


APPENDIX D

Mead Valley Cajalco Sewer Project 30% Design Plans

EASTERN MUNICIPAL WATER DISTRICT **RIVERSIDE COUNTY, CALIFORNIA** MEAD VALLEY CAJALCO SEWER PRELIMINARY DESIGN PROJECT 30% DESIGN

D-XXXXX	5	C-3	PLAN AND PROFILE STA 29+00 TO STA 39+00
D-XXXXX	6	C-4	PLAN AND PROFILE STA 39+00 TO STA 49+00
D-XXXXX	7	C-5	PLAN AND PROFILE STA 49+00 TO STA 59+00
D-XXXXX	8	C-6	PLAN AND PROFILE STA 59+00 TO STA 69+00
D-XXXXX	9	C-7	PLAN AND PROFILE STA 69+00 TO STA 79+00
D-XXXXX	10	C-8	PLAN AND PROFILE STA 79+00 TO STA 89+00
D-XXXXX	11	C-9	PLAN AND PROFILE STA 89+00 TO STA 99+00
D-XXXXX	12	C-10	PLAN AND PROFILE STA 99+00 TO STA 109+00
D-XXXXX	13	C-11	PLAN AND PROFILE STA 109+00 TO STA 119+00
D-XXXXX	14	C-12	PLAN AND PROFILE STA 119+00 TO STA 129+00
D-XXXXX	15	C-13	PLAN AND PROFILE STA 129+00 TO STA 138+00


BOARD OF DIRECTORS

PHILIP E. PAULE **STEPHEN J. CORONA** JEFF D. ARMSTRONG RANDY A. RECORD DAVID J. SLAWSON JOE MOUAWAD, P.E.

PRESIDENT VICE-PRESIDENT **BOARD MEMBER BOARD MEMBER BOARD MEMBER**

APPROVED BY:

LANAYA VOELZ ALEXANDER, P.E. ASSISTANT GENERAL MANAGER OF PLANNING, ENGINEERING AND CONSTRUCTION

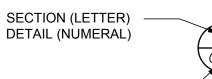
NO. DATE INITIAL REVISIONS DESCRIPTION

APP'VD/DATE

APPROVED BY:

SENIOR DIRECTOR OF ENGINEERING

<u>LEGEND</u>

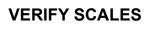

ROAD CL DATA PIPE ALIGNMENT DATA EXISTING RIGHT OF WAY EXISTING PROPERTY LINE EXISTING CENTERLINE PROPOSED SEWER PROPOSED SEWER MANHOLE ABANDON EXISTING UTILITY DEMOLISH EXISTING STRUCTURE EXISTING OVERHEAD CATV EXISTING BURIED CATV EXISTING OVERHEAD ELECTRIC EXISTING BURIED ELECTRIC EXISTING OVERHEAD FIBER OPTIC EXISTING BURIED FIBER OPTIC EXISTING OVERHEAD TELEPHONE EXISTING GAS VALVE EXISTING GAS LATERAL EXISTING 2" GAS MAIN EXISTING 4" GAS MAIN EXISTING 6" GAS MAIN EXISTING SEWER MANHOLE EXISTING 6" SEWER FORCE MAIN EXISTING 8" SEWER MAIN EXISTING 10" SEWER MAIN EXISTING 12" SEWER MAIN EXISTING 15" SEWER MAIN EXISTING 18" SEWER MAIN EXISTING 14" RECYCLED WATER MAIN EXISTING 16" RECYCLED WATER MAIN EXISTING WATER LATERAL EXISTING FIRE HYDRANT LATERAL EXISTING WATER VALVE EXISTING FIRE HYDRANT EXISTING 4" WATER MAIN EXISTING 6" WATER MAIN EXISTING 12" WATER MAIN EXISTING 16" WATER MAIN EXISTING 18" WATER MAIN EXISTING STORM DRAIN MANHOLE EXISTING STORM DRAIN EXISTING FENCE EXISTING EDGE OF PAVEMENT EXISTING EDGE OF PAVEMENT EXISTING POWER POLE EXISTING ELECTRICAL BOX EXISTING TELEPHONE BOX EXISTING MAILBOX EXISTING STREETLIGHT EXIST PALM TREE EXIST TREE/BUSH

		0				
lŀ	II- II-	lŀ	lŀ		<i>II</i> ·	
XX		\propto	\sum		\times	
	- — — он-тv — — — — т\					
	- — ОН-Е					
	— —E — — -					
	- — — ОН-FO			– — OH-F	0 —	
	— — — —FC)——		- —F0 —		
	- — ОН-Т			— — ОН-Т		
		⊗G	V			
	— —G— — -				—G —	
	— — — —2"(
				- —4"G— - —6"G—		
		, (S)		0 G		
	— — — —FN			– —FM —		
	— — — 8"ss					
	— — —10"ss	s — —		- —10"SS		
	— — —12"SS	; — —		- —12"SS		
	— — —15"ss	5 — —		- —15"SS		
	— — —18"SS	; — —		- —18"SS		
	— — — 14"R\	v— —		– — 14"R'	W	
	— — — 16"R\			– — 16"R'	W	
		\otimes V				
	. 22	H		. 22		
	— — — 4"W — — — 4"W					
	— — — 4 W — — — 4"W					
	— — — 6"W					
	— — —12"W					
	———16"W			- —16"W		
	— — —18"W			- —18"W		
		\bigcirc				
-X	× ×	-X-	—×	X	—×	
	_	<u> </u>	_			
		E				
		T				

ABBREVIATIONS

ABAN	ABANDONED
AC	ASBESTOS-CEMENT
AVAR	AIR VACUUM AND AIR RELEASE VALVE
AVE	AVENUE
BO	BLOW OFF
BOT	BOTTOM
CATV	CABLE TELEVISION
CDF	CONTROL DENSITY FILL
CG	CENTER GRADE
CL	CENTERLINE
CLR	CLEARANCE
	CEMENT MORTAR LINED & COATED
CML&C	
CONC	CONCRETE
CTS	CORROSION TEST STATION
DCDA	DOUBLE CHECK DETECTOR ASSEMBLY
DEFL	DEFLECTION
	DRAWING
DWG	
(E), EXIST	EXISTING
EL	ELEVATION
ELEC,E	ELECTRICAL
EMWD	EASTERN MUNICIPAL WATER DISTRICT
FCA	FLANGE COUPLING ADAPTER
FH	FIRE HYDRANT
FLG	FLANGE
FO	FIBER OPTIC
G	GAS
GPM	GALLON PER MINUTE
GV	GATE VALVE
Н	HUB
HDC	HIGH DEFLECTION COUPLING
	LATERAL
LAT	
MIN	MINIMUM
(N)	NEW, PROPOSED
ŎĤ	OVER HEAD
PH	POTHOLE
PI	POINT OF INTERSECTION
PP	POWER POLE
PVC	POLYVINYL CHLORIDE PIPE
RBS	RIDGEMOOR BOOSTER STATION
RCFC&WCD	RIVERSIDE COUNTY FLOOD CONTROL AND
NOI COMOD	
	WATER CONSERVATION DISTRICT
RD	ROAD
RSGV	RESILIENT SEATED GATE VALVE
SC	SPECIAL CONDITION
SCG	SOUTHERN CALIFORNIA GAS COMPANY
SD	STORM DRAIN
SFM	SEWER FORCE MAIN
S	SLOPE
SS	SANITARY SEWER
SHT	SHEET
SLT	STREET LIGHT
STA	STATION
STD	STANDARD
TEL	TELEPHONE
TEMP	TEMPORARY
TS	TRAFFIC SIGNAL
TYP	TYPICAL
UG	UNDERGROUND
UNK	UNKNOWN
VERT	VERTICAL
W	WATER
XING	CROSSING

DETAIL REFERENCE


DRAWING NUMBER DRAWN ON

Underground Service Alert

Call: TOLL FREE 811

TWO WORKING DAYS BEFORE YOU DIG

BAR IS ONE INCH ON ORIGINAL DRAWING

IF NOT ONE INCH ON THIS SHEET, ADJUST SCALES ACCORDINGLY PLANS PREPARED BY: 43410 BUSINESS PARK DRIVE TEMECULA, CA 92590 T 951.396.4980

OMB

-10

*

 \bigcirc

UNDER THE SUPERVISION OF:

RYAN M. HUSTON C60324 PROFESSIONAL ENGINEER R.C.E. No.

6/30/24

DATE

RELEASE VALVE

NO. DATE INITIAL

REVISIONS DESCRIPTION

APP'VD/DATE

APPROVED BY:

SENIOR DIRECTOR OF ENGINEERING DATE REFERENCES

APPROVALS INSPECTION

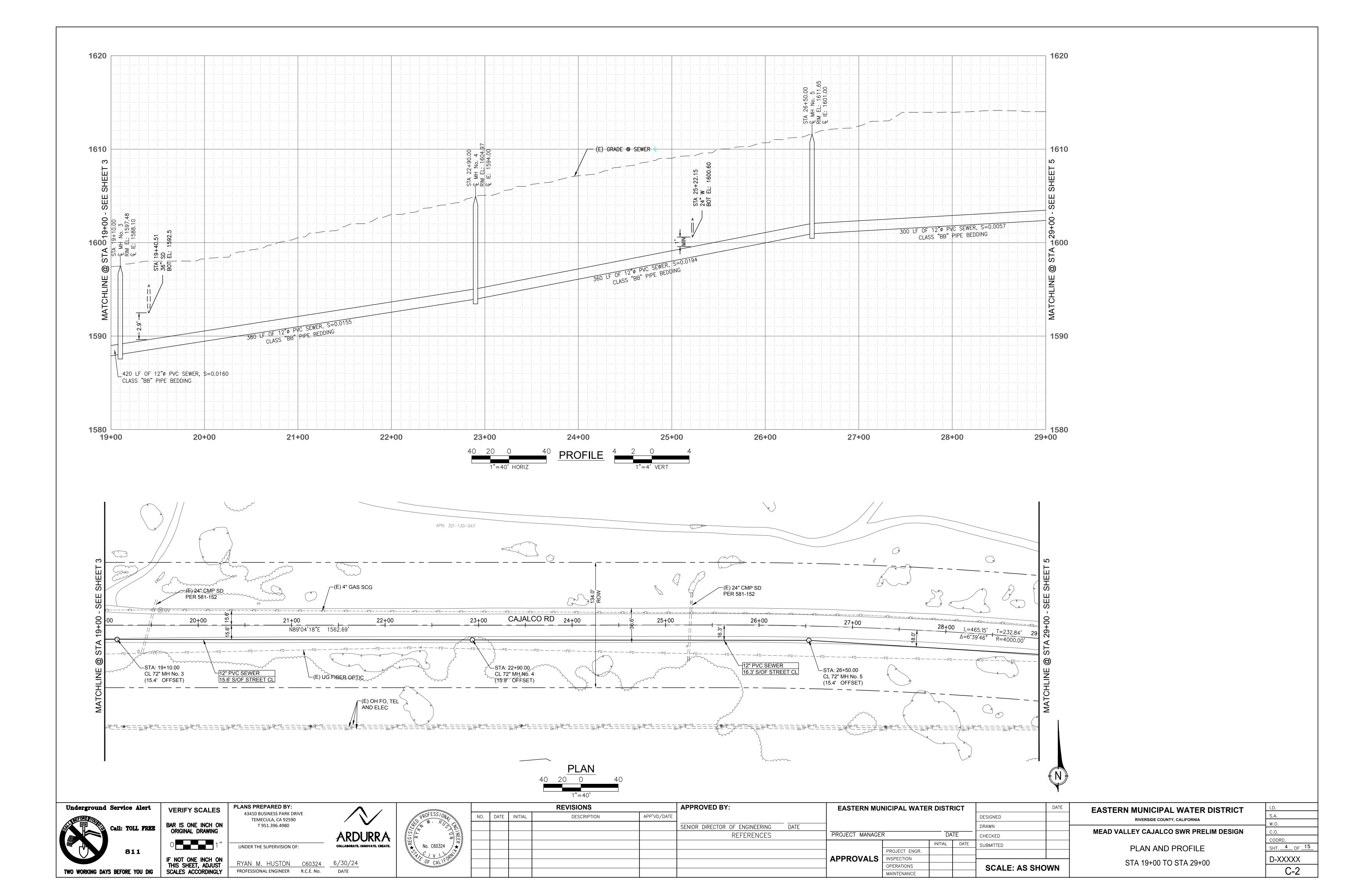
PROJECT MANAGER

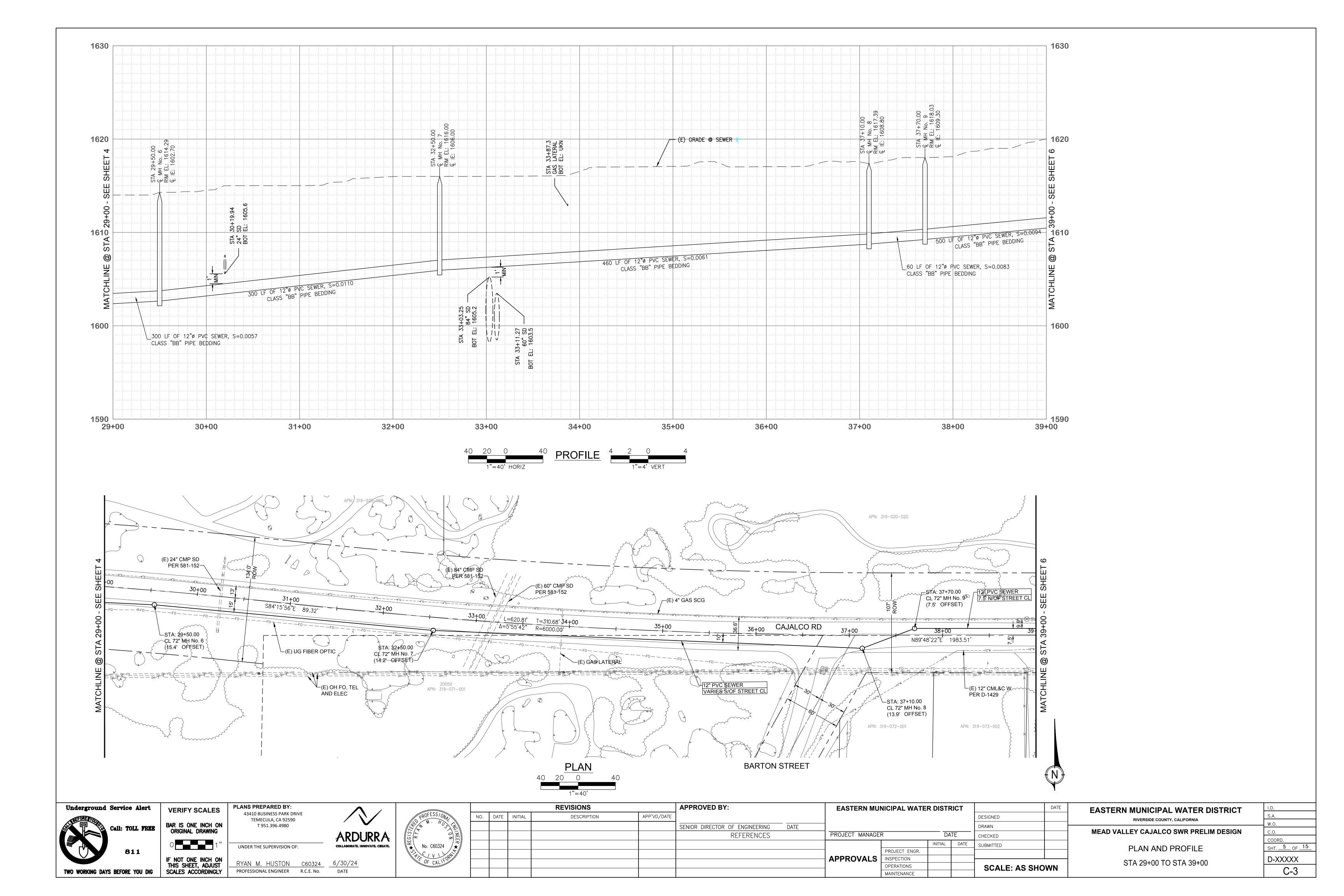
ENGINEER'S NOTE TO CONTRACTOR

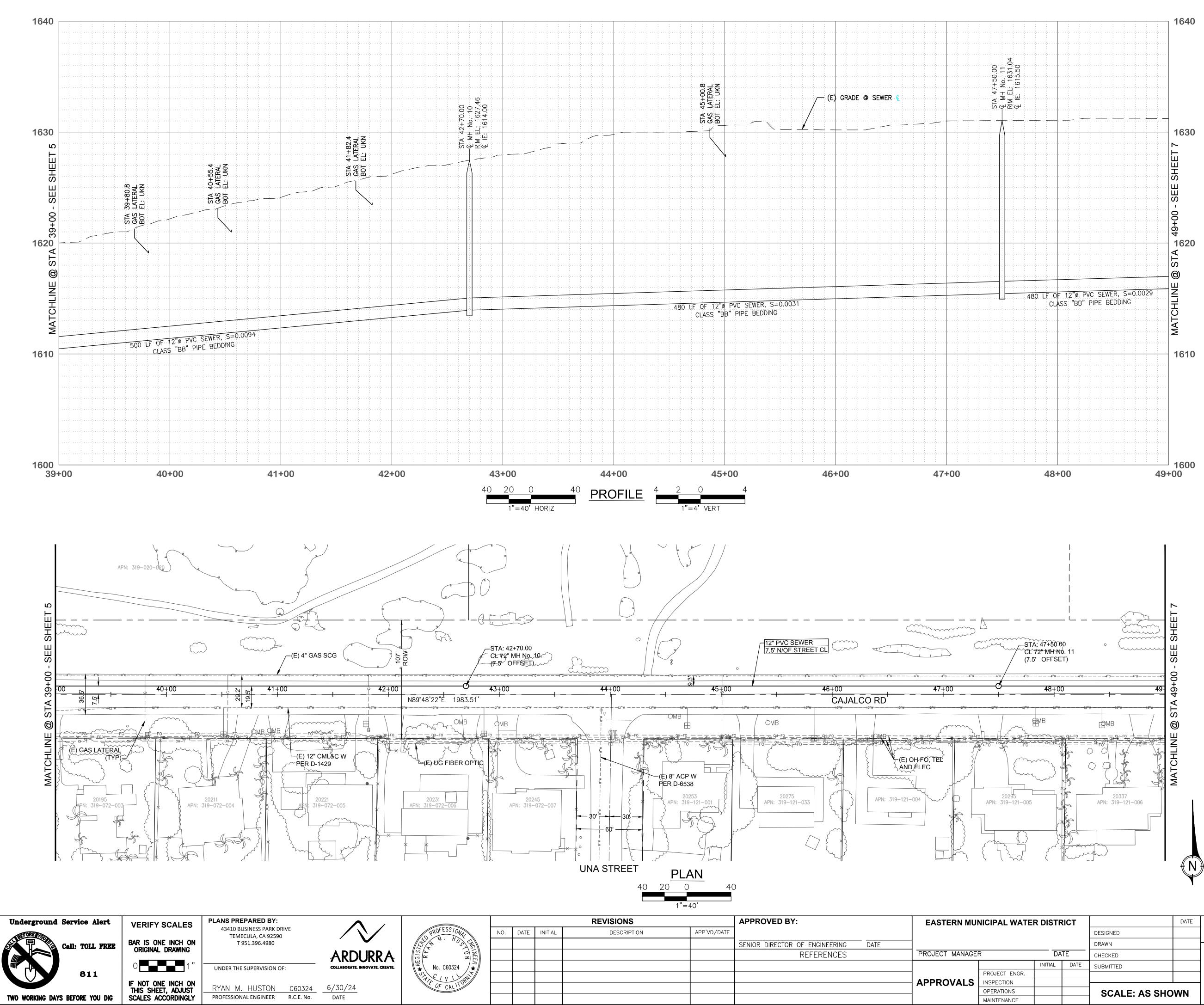
THE EXISTENCE AND LOCATION OF ANY UNDERGROUND UTILITIES OR STRUCTURES SHOWN ON THESE PLANS WERE OBTAINED BY A SEARCH OF AVAILABLE RECORDS. THE CONTRACTOR IS REQUIRED TO TAKE DUE PRECAUTIONARY MEASURES TO PROTECT THE UTILITIES SHOWN, AND ANY OTHER LINES OR STRUCTURES NOT SHOWN ON THESE PLANS, AND IS RESPONSIBLE FOR THE PROTECTION OF, AND ANY DAMAGE TO THESE LINES OR STRUCTURES.

CONSTRUCTION CONTRACTOR AGREES THAT IN ACCORDANCE WITH GENERALLY ACCEPTED CONSTRUCTION PRACTICES, CONSTRUCTION CONTRACTOR WILL BE REQUIRED TO ASSUME SOLE AND COMPLETE RESPONSIBILITY FOR JOB SITE CONDITIONS DURING THE COURSE OF CONSTRUCTION OF THIS PROJECT, INCLUDING SAFETY OF ALL PERSONS AND PROPERTY; THAT THIS REQUIREMENT SHALL APPLY CONTINUOUSLY AND NOT BE LIMITED TO NORMAL WORKING HOURS, AND CONSTRUCTION CONTRACTOR FURTHER AGREES TO DEFEND, INDEMNIFY AND HOLD DESIGN PROFESSIONAL AND EMWD HARMLESS FROM ANY AND ALL LIABILITY, REAL OR ALLEGED, IN CONNECTION WITH THE PERFORMANCE OF WORK ON THIS PROJECT.

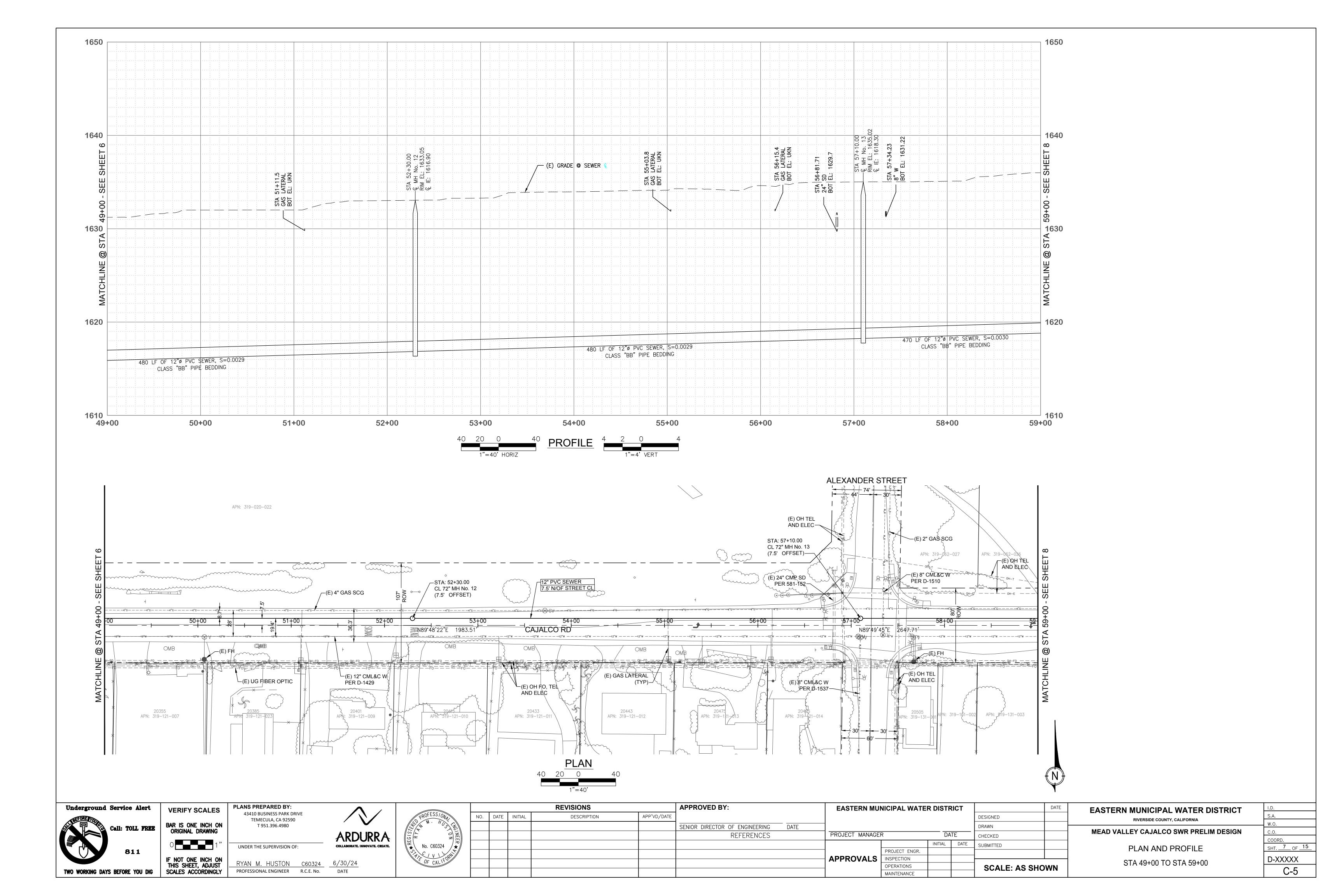
THE CONTRACTOR SHALL BE RESPONSIBLE TO REPORT DISCREPANCIES IN PLANS AND/OR CONDITIONS IMMEDIATELY TO THE DISTRICT AND THE DESIGN ENGINEER FOR RESOLUTION PRIOR TO CONSTRUCTION, AND SHALL BE RESPONSIBLE FOR DISCREPANCIES NOT SO REPORTED AND RESOLVED.

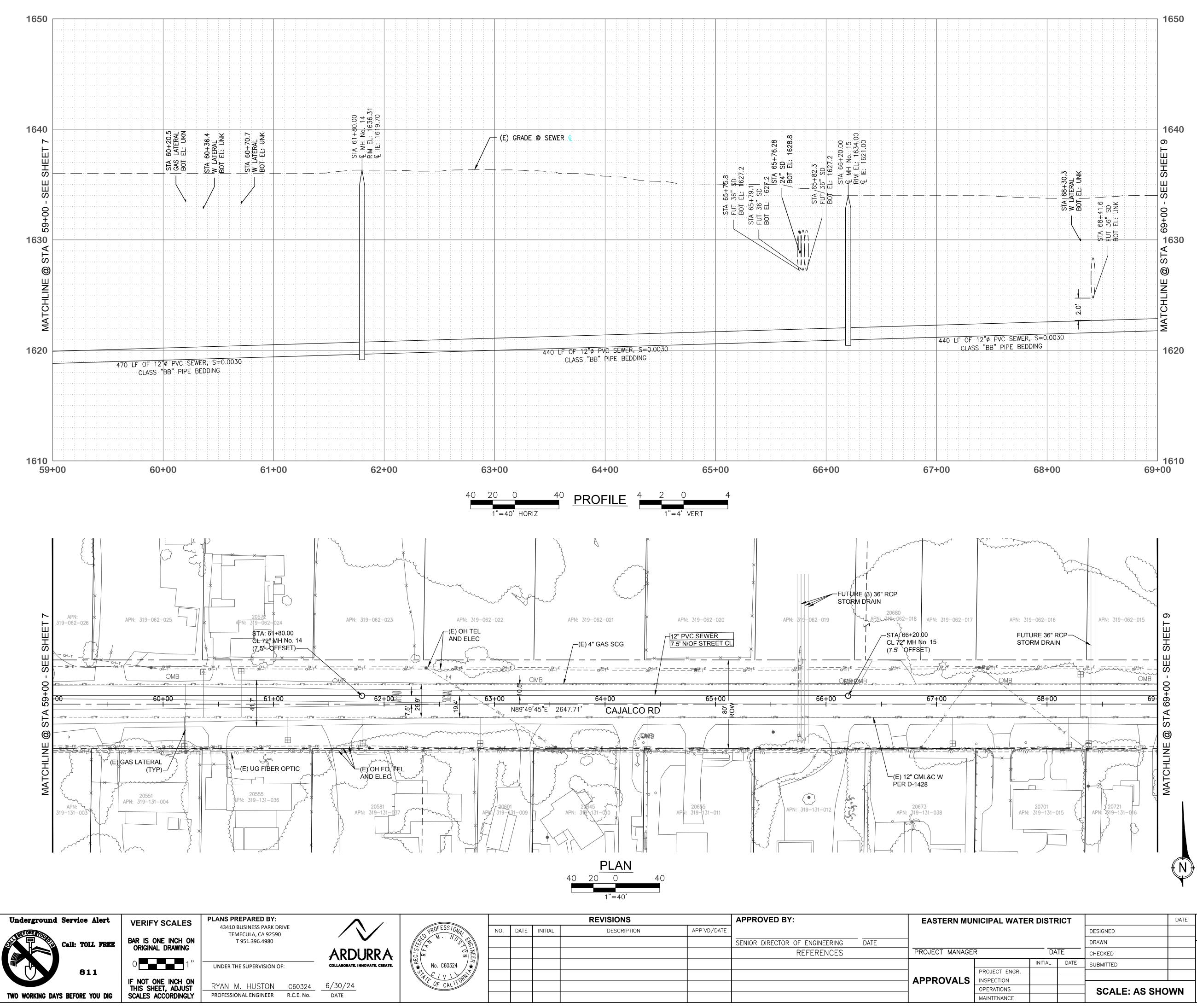

NOTE TO CONTRACTOR


- 1. ALL EXISTING UNDERGROUND UTILITY LOCATIONS SHOWN HEREON ARE FROM PLANS FURNISHED BY THE RESPECTIVE UTILITY COMPANIES. CONTRACTOR SHALL CONTACT "UNDERGROUND SERVICE ALERT" (USA 811) TO VERIFY EXISTING UTILITY LOCATIONS ON SITE BEFORE COMMENCING CONSTRUCTIONS.
- 2. CONTRACTOR SHALL MAKE ALL NECESSARY SERVICE CONNECTIONS TO THE NEW PIPELINE, REGARDLESS OF EXISTING UTILITY CONFLICTS AND SHALL INCLUDE IN THEIR BID ACCORDINGLY.
- 3. WHERE INVESTIGATIONS OF SUBSURFACE CONDITIONS HAVE BEEN MADE BY EMWD IN RESPECT TO FOUNDATION OR OTHER STRUCTURAL DESIGN, AND THAT INFORMATION IS SHOWN IN THE PLANS, SAID INFORMATION REPRESENTS ONLY THE STATEMENT BY EMWD AS TO THE CHARACTER OF THE MATERIAL WHICH HAS BEEN ACTUALLY ENCOUNTERED BY IT IN ITS INVESTIGATIONS, AND IS ONLY INCLUDED FOR THE CONVENIENCE OF BIDDERS. INVESTIGATIONS OF SUBSURFACE CONDITIONS ARE MADE FOR THE PURPOSE OF DESIGN, AND EMWD ASSUMES NO RESPONSIBILITY WHATSOEVER IN RESPECT TO THE SUFFICIENCY OR ACCURACY OF THE BORINGS OR OF THE LOG OF TEST BORINGS OR OTHER PRELIMINARY INVESTIGATIONS, OR OF THE INTERPRETATION THEREOF, AND THERE IS NO GUARANTY EITHER EXPRESSED OR IMPLIED, THAT THE CONDITIONS INDICATED ARE REPRESENTATIVE OF THOSE EXISTING THROUGHOUT THE WORK OR ANY PART OF IT, OR THAT UNLOCKED FOR DEVELOPMENTS MAY NOT OCCUR.
- 4. MAKING SUCH INFORMATION AVAILABLE TO BIDDERS IS NOT TO BE CONSTRUED IN ANY WAY AS WAIVER OF THE PROVISIONS OF THE FIRST PART OF THIS ARTICLE AND BIDDERS MUST BE SATISFY THEMSELVES THROUGH THEIR OWN INVESTIGATIONS AS TO CONDITIONS TO BE ENCOUNTERED.


WATER NOTES

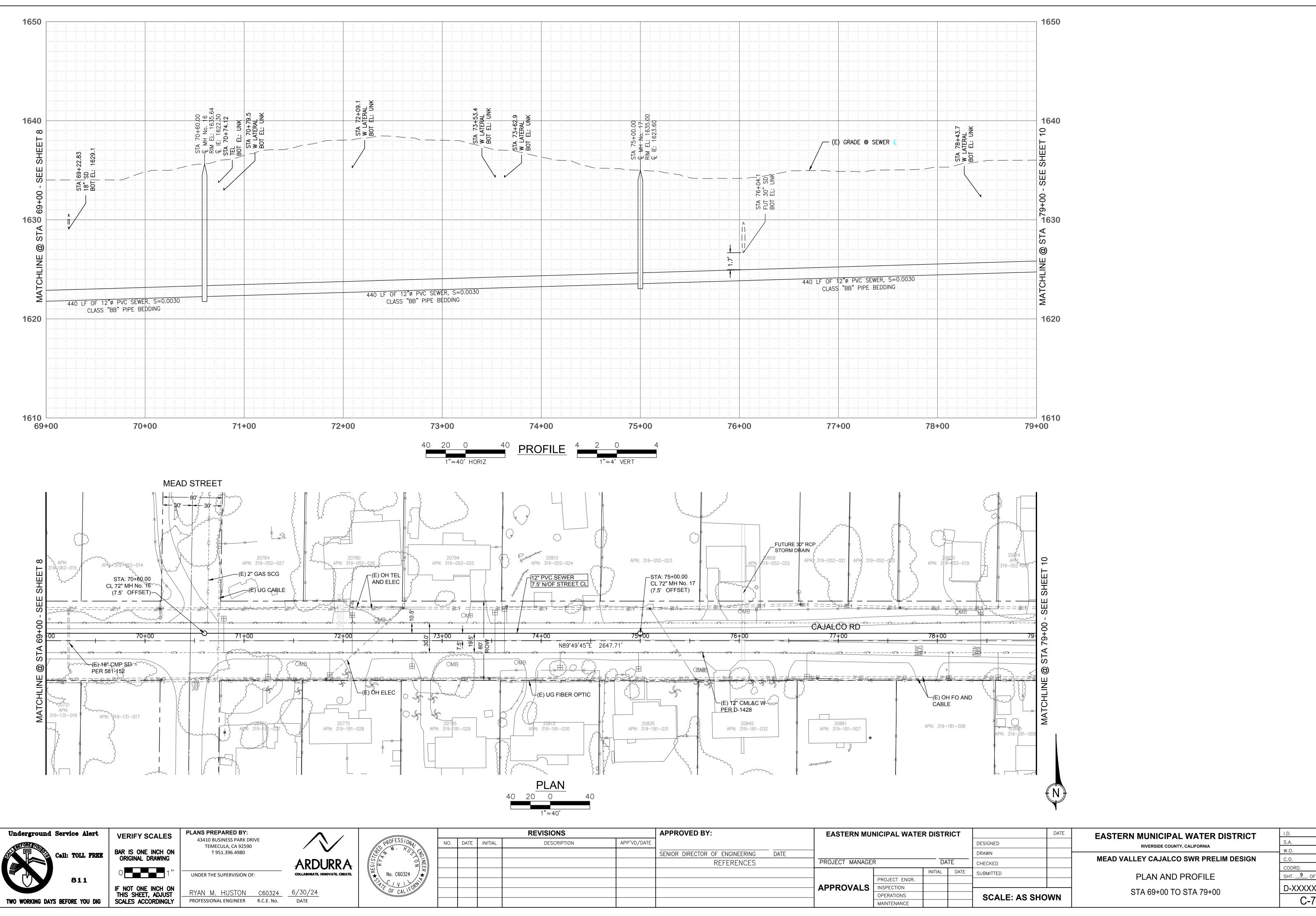
EASTERN MU	NICIPAL WATE		RICT		DATE	EASTERN MUNICIPAL WATER DISTRICT	I.D.
				DESIGNED		RIVERSIDE COUNTY, CALIFORNIA	S.A.
				DRAWN			W.O.
ROJECT MANAGE	7	DA	TE	CHECKED		MEAD VALLEY CAJALCO SWR PRELIM DESIGN	<u>C.O.</u>
		INITIAL	DATE	SUBMITTED		OFNEDAL NOTES LEGEND	COORD. SHT. <u>2</u> OF <u>15</u>
	PROJECT ENGR.					GENERAL NOTES, LEGEND	SHI OF
					D-XXXXX		
	OPERATIONS			SCALE: AS SH		AND ABBREVIATIONS	
	MAINTENANCE						G-2

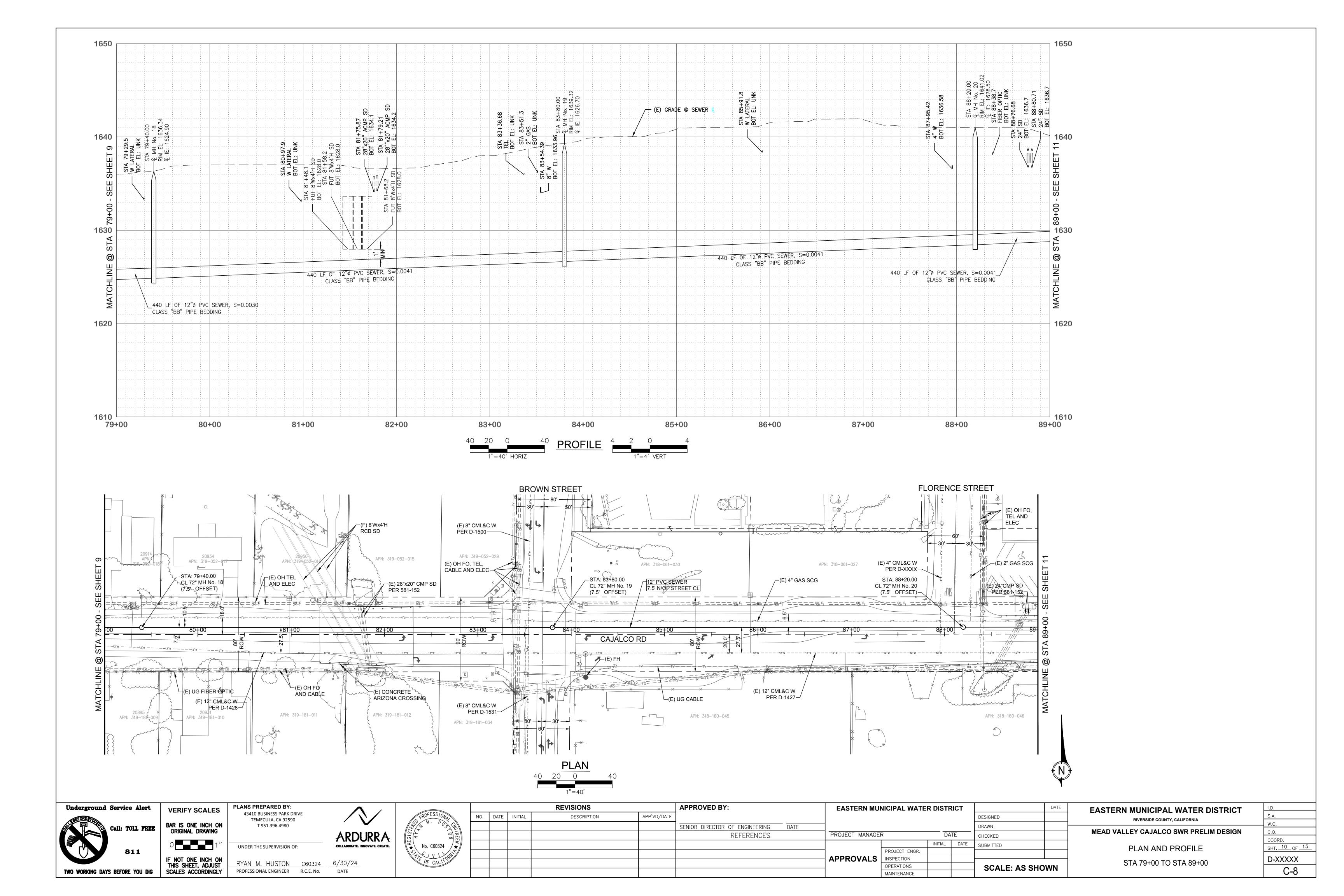


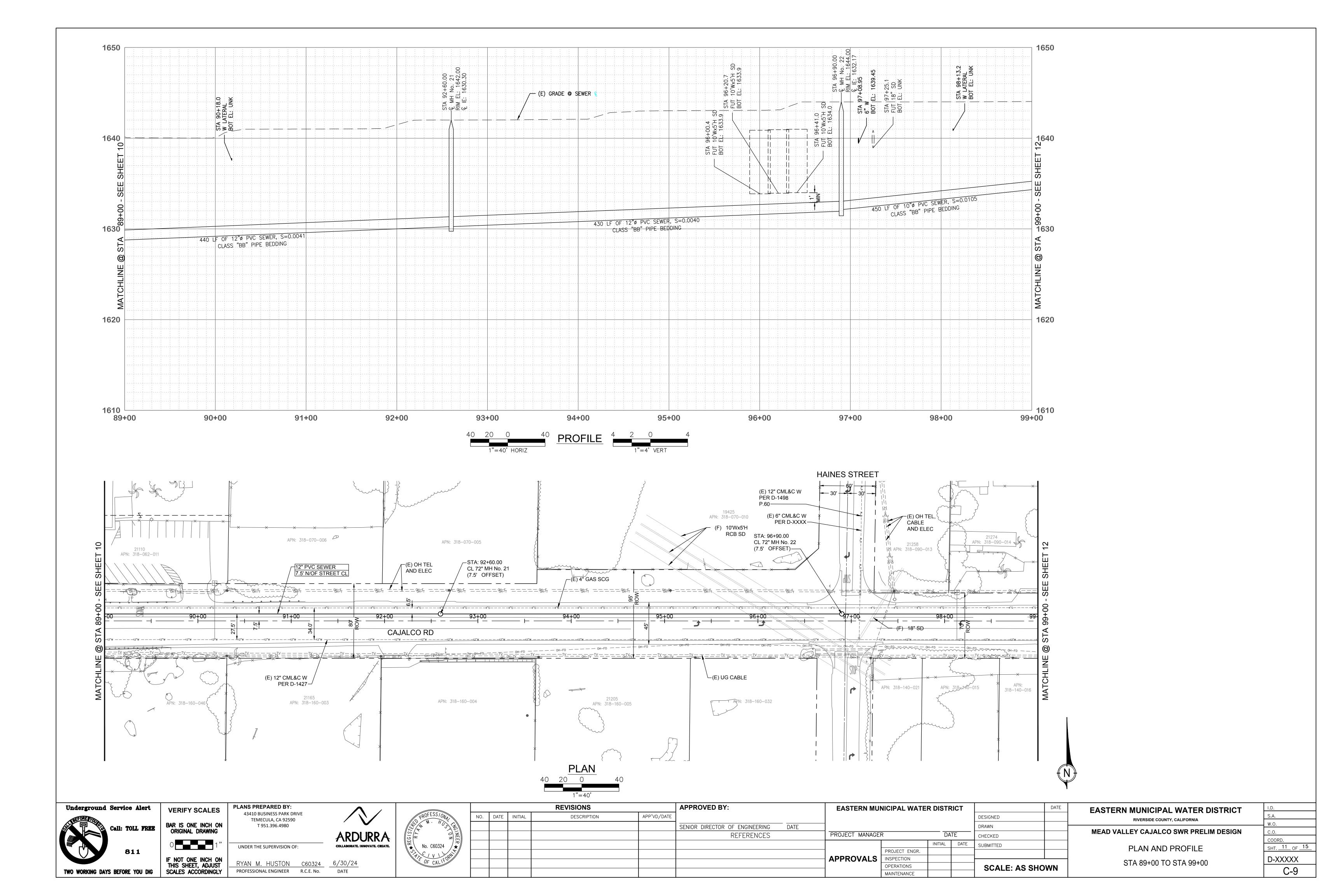

EASTERN MUNICIPAL WATER DISTRICT
RIVERSIDE COUNTY, CALIFORNIA

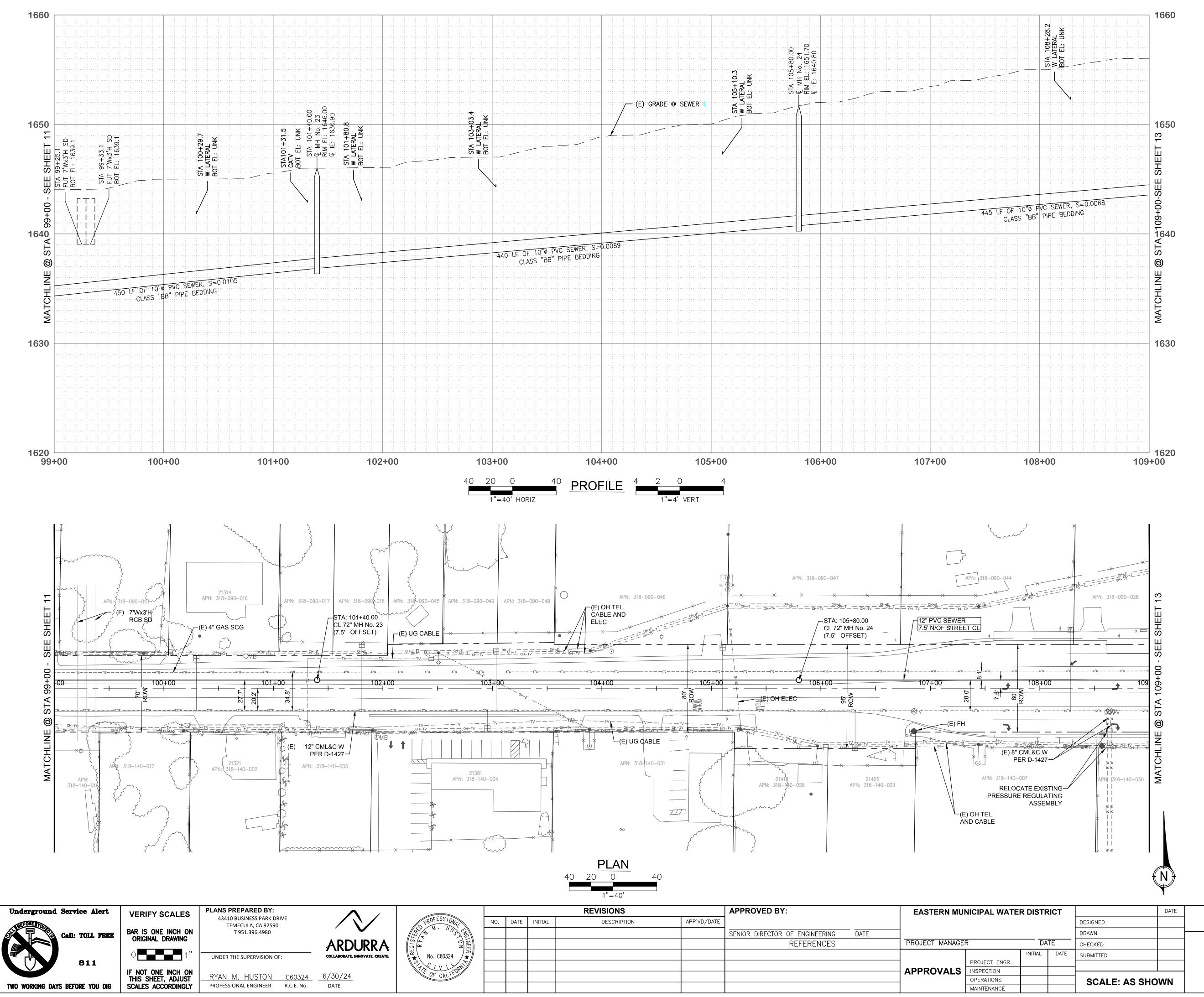
MEAD VALLEY CAJALCO SWR PRELIM DESIGN

PLAN AND PROFILE STA 39+00 TO STA 49+00

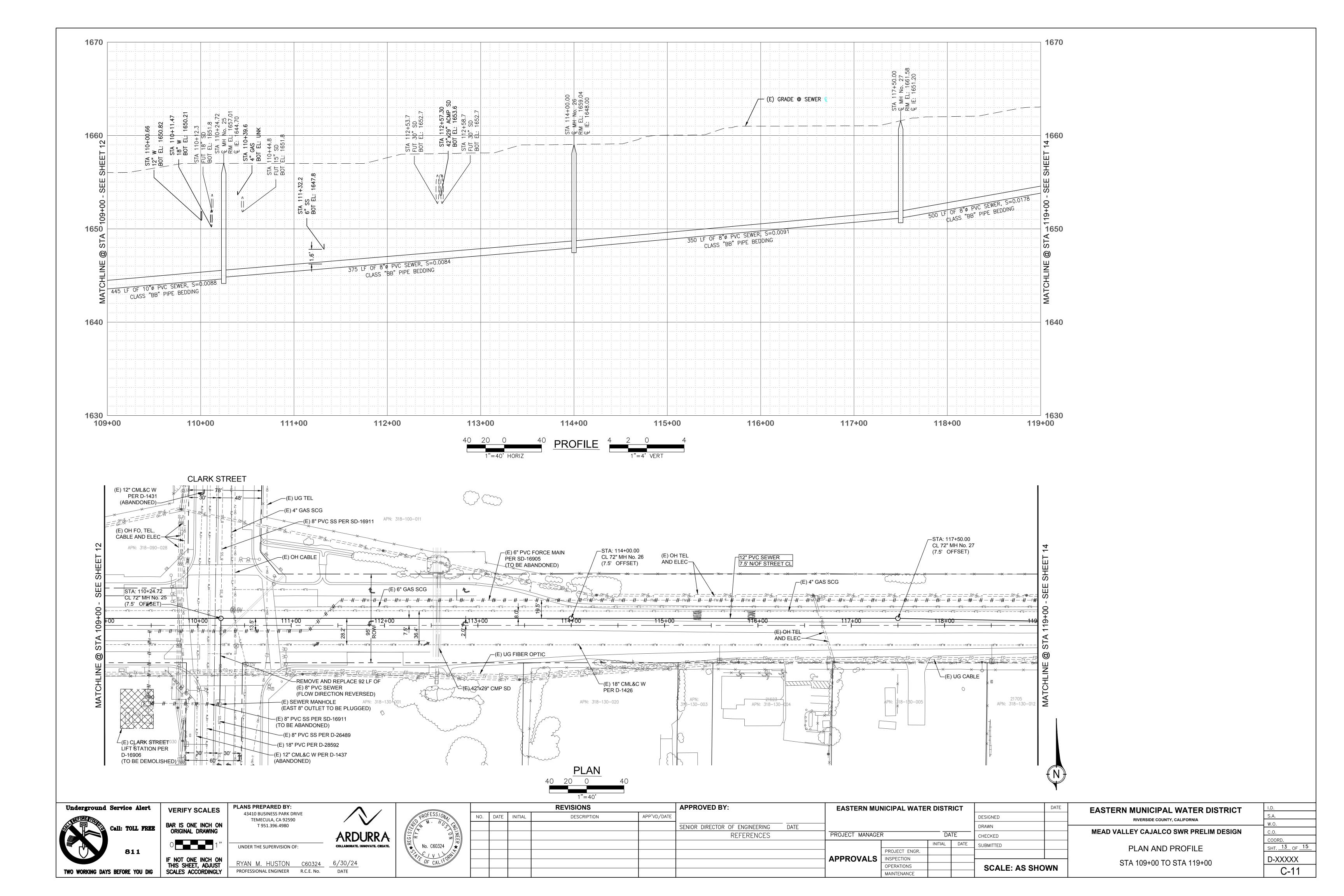

I.D.
S.A.
W.O.
C.O.
COORD.
SHT. <u>6</u> OF <u>15</u>
D-XXXXX
C-4

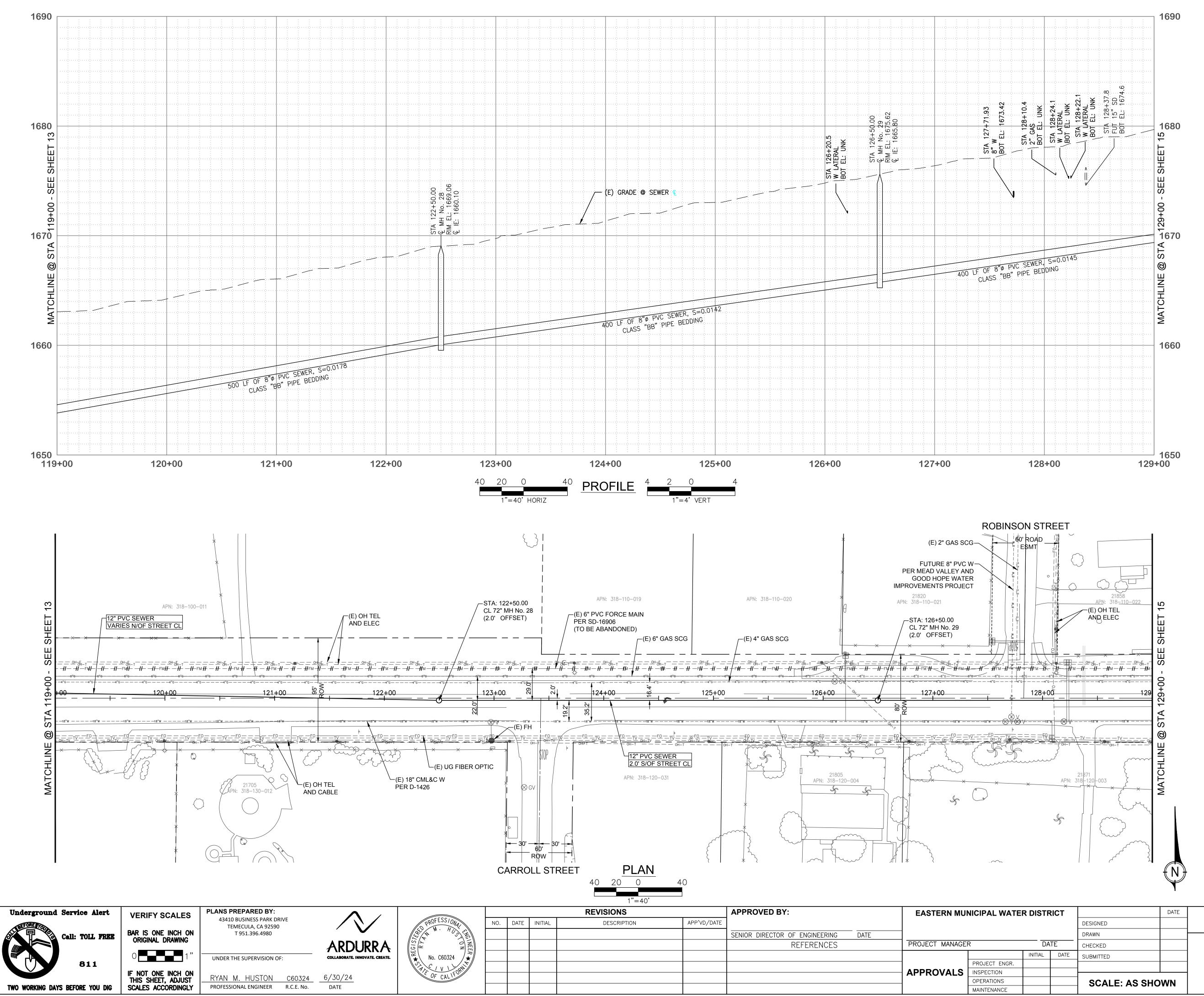



R DISTF	RICT		DATE	EASTERN MUNICIPAL WATER DISTRICT
		DESIGNED		RIVERSIDE COUNTY, CALIFORNIA
		DRAWN		MEAD VALLEY CAJALCO SWR PRELIM DESIGN
DA	TE	CHECKED		MEAD VALLET CAJALCO SWR PRELIM DESIGN
INITIAL	DATE	SUBMITTED		PLAN AND PROFILE
		_		
		SCALE: AS SHO	WN	STA 59+00 TO STA 69+00
	-	·	•	


I.D. S.A. W.O. C.O. COORD. SHT. <u>8</u> OF <u>15</u> D-XXXXX C-6

	С	-7	
	D-XXX	ХХ	
	SHT. 9	_ OF _	15
	COORD.		
	C.O.		
_	W.O.		

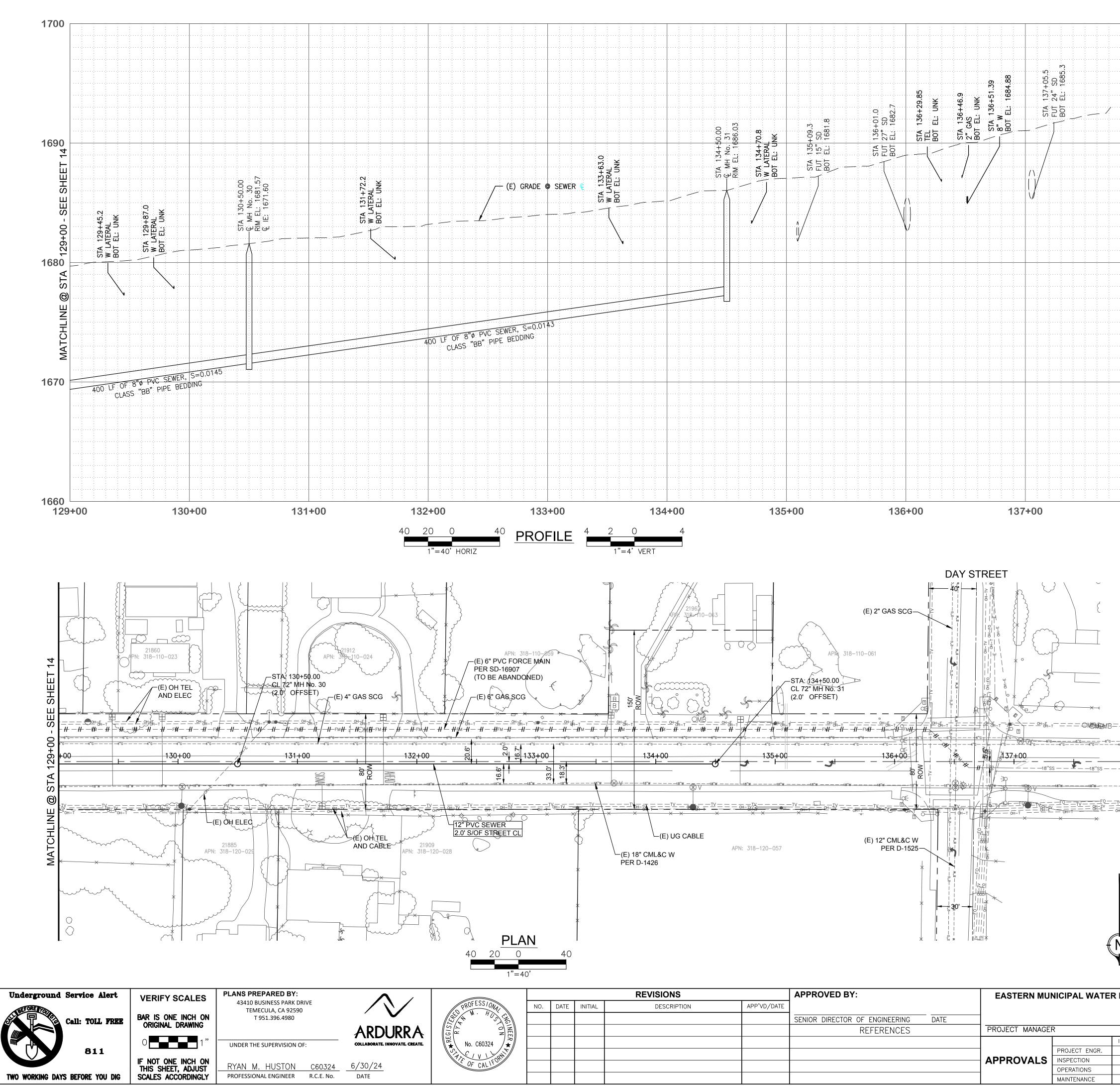



EASTERN MUNICIPAL WATER DISTRICT RIVERSIDE COUNTY, CALIFORNIA

MEAD VALLEY CAJALCO SWR PRELIM DESIGN

PLAN AND PROFILE STA 99+00 TO STA 109+00

I.D. S.A. W.O. C.O. COORD. SHT. <u>12</u> OF <u>15</u> D-XXXXX	C-10
S.A. W.O. C.O. COORD.	D-XXXXX
S.A. W.O. C.O.	SHT. <u>12</u> OF <u>15</u>
S.A. W.O.	COORD.
S.A.	C.O.
	W.O.
I.D.	S.A.
	I.D.



EASTERN MUNICIPAL WATER DISTRICT RIVERSIDE COUNTY, CALIFORNIA

MEAD VALLEY CAJALCO SWR PRELIM DESIGN

PLAN AND PROFILE STA 119+00 TO STA 129+00

C-12
D-XXXXX
SHT. <u>14</u> OF <u>15</u>
COORD.
C.O.
W.O.
S.A.
I.D.

<u> </u>	ר 1700)			
· · · · · · · · · · · · · · · · · · ·					
•••••					
· · · · · · · · · · · · · · · · · · ·	1690)			
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·	1680)			
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·	1670)			
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·					
· · · · · · · · · · · · · · · · · · ·					
138	」1660 3+00	,			
0					
		DESIGNED DRAWN	DATE	EASTERN MUNICIPAL WATER DISTRICT RIVERSIDE COUNTY, CALIFORNIA MEAD VALLEY CAJALCO SWR PRELIM DESIGN	I.D. S.A. W.O. C.O.
	TE DATE	CHECKED			C.O. COORD.
	DAIE	SUBMITTED		PLAN AND PROFILE	SHT. <u>15</u> OF <u>15</u>
				STA 129+00 TO STA 138+00	D-XXXXX

SCALE: AS SHOWN

STA 129+00 TO STA 138+00

D-XXXXX C-13

APPENDIX E

Hydraulic Analysis Prior to Buildout

Average Dry Weather Flow from Dudek TM						
(gpd) (gpm)						
	School	6735	4.68			
F	ublic Facility	4424	3.07			
Medium Densit	y Residential	32430	22.52			
Total Clark LS I	nfluent Flow	43589	30.2701			

Flow Influent to MH #	Reach No.	Intersection	Trib Area (ac)	Ave Dry Influent to MH (gpd)	Ave Dry in Reach (gpd)	Ave Dry in Reach (gpm)	PDWF in Reach (gpm)	V (PDWF) (fps)	PWWF (gpm)	d/D (PWWF)	Slope	Sewer Size	MH Size	MH Depth	Reach Length (ft)	Rim El	CL El	Sta
MH No. 31		Day St		0									48"	9.1		1686.03	1677.3	13450
	30				0	0.00	0.00	0.0	0.00	0	0.0143	8"			400			
MH No. 30				0									48"	10.3		1681.57	1671.6	13050
	29				0	0.00	0.00	0.0	0.00	0	0.0145	8"			400			
MH No. 29		Robinson St		0									48"	10.2		1675.62	1665.8	12650
	28				0	0.00	0.00	0.0	0.00	0	0.0142	8"			400			
MH No. 28		Carroll St		0									48"	9.3		1669.06	1660.1	12250
	27				0	0.00	0.00	0.0	0.00	0	0.0178	8"			500			
MH No. 27				0									48"	10.7		1661.58	1651.2	11750
	26				0	0.00	0.00	0.0	0.00	0	0.0091	8"			350			
MH No. 26				0	-								48"	11.4		1659.04	1648	11400
	25				0	0.00	0.00	0.0	0.00	0	0.0084	8"		10.0	375.28			
MH No. 25		Clark St		43589	10500					0.00		1.0.1	48"	12.6		1657.01	1644.86	11024.72
	24				43589	30.27	86.88	2.4	104.25	0.23	0.0088	10"	40"		444.72			10500
MH No. 24	22			43589	42500	20.27	06.00	2.4	404.25	0.22	0.0000	4.011	48"	11.4	110	1651.7	1640.7	10580
	23			425.00	43589	30.27	86.88	2.4	104.25	0.23	0.0089	10"	40"	0.5	440	1646	4626.0	10110
MH No. 23	22			43589	42500	20.27	06.00	2 5	101 25	0.22	0.0105	1.01	48"	9.5	450	1646	1636.9	10140
MUNE 22	22	Haines St		43589	43589	30.27	86.88	2.5	104.25	0.22	0.0105	10"	48"	12.5	450	1644	1632	9690
MH No. 22		Haines St		43589	43589	30.27	86.88	1.7	104.25	0.22	0.004	12"	48	12.5	430	1044	1032	9690
MH No. 21	21			43589	45569	50.27	00.00	1./	104.25	0.22	0.004	12	48"	12.2	450	1642	1630.3	9260
WIT NO. 21	20			43389	43589	30.27	86.88	1.8	104.25	0.22	0.0041	12"	40	12.2	440	1042	1030.3	9200
MH No. 20		Florence St		43589	43303	50.27	00.00	1.0	104.23	0.22	0.0041	12	48"	13.0	440	1641.02	1628.5	8820
1011110.20	19	horence st		+5505	43589	30.27	86.88	1.8	104.25	0.22	0.0041	12"	+0	15.0	440	1041.02	1020.5	0020
MH No. 19		Brown St		43589	+3303	50.27	00.00	1.0	104.25	0.22	0.0041	12	48"	13.1	-+0	1639.32	1626.7	8380
	18			10000	43589	30.27	86.88	1.8	104.25	0.22	0.0041	12"		10.1	440	1000102	102017	0000
MH No. 18				43589		50.27				0.22			48"	11.9		1636.34	1624.9	7940
	17				43589	30.27	86.88	1.6	104.25	0.24	0.003	12"			440			
MH No. 17				43589									48"	2.9		1635	1632.6	7500
	16				43589	30.27	86.88	1.6	104.25	0.24	0.003	12"	_	-	440			
MH No. 16		Mead St		43589									48"	13.8		1635.64	1622.3	7060
	15				43589	30.27	86.88	1.6	104.25	0.24	0.003	12"			440			
MH No. 15				43589									48"	13.5		1634	1621	6620

Eastern Municipal Water District Mead Valley Cajalco Sewer Project Hydraulic Analysis

Flow Influent to MH #		Intersection	Trib Area (ac)	Ave Dry Influent to MH (gpd)	in Reach (gpd)	Ave Dry in Reach (gpm)	PDWF in Reach (gpm)	V (PDWF) (fps)		d/D (PWWF)		Sewer Size	MH Size	MH Depth	Reach Length (ft)	Rim El	CL EI	Sta
	14				43589	30.27	86.88	1.6	104.25	0.24	0.003	12"			440			
MH No. 14				43589									48"	17.1		1636.31	1619.7	6180
	13				43589	30.27	86.88	1.6	104.25	0.24	0.003	12"			470			
MH No. 13		Alexander St		43589									48"	17.2		1635.02	1618.3	5710
	12				43589	30.27	86.88	1.5	104.25	0.24	0.0029	12"			480			
MH No. 12				43589									48"	16.6		1633.05	1616.9	5230
	11				43589	30.27	86.88	1.5	104.25	0.24	0.0029	12"			480			
MH No. 11				43589									48"	16.0		1631.04	1615.5	4750
	10				43589	30.27	86.88	1.6	104.25	0.24	0.0031	12"			480			
MH No. 10		Una St		43589									48"	14.0		1627.46	1614	4270
	9				43589	30.27	86.88	2.4	104.25	0.18	0.0094	12"			500			
MH No. 9				43589									48"	9.2		1618.03	1609.3	3770
	8				43589	30.27	86.88	2.2	104.25	0.18	0.0083	12"			60			
MH No. 8		Barton St		43589									48"	9.1		1617.39	1608.8	3710
	7				43589	30.27	86.88	2.0	104.25	0.2	0.0061	12"			460			
MH No. 7				43589									48"	10.5		1616	1606	3250
	6				43589	30.27	86.88	2.5	104.25	0.17	0.011	12"			300			
MH No. 6				43589									48"	12.1		1614.29	1602.7	2950
	5				43589	30.27	86.88	2.1	104.25	0.2	0.0057	12"			300			
MH No. 5				43589									48"	11.2		1611.65	1601	2650
	4				43589	30.27	86.88	3.0	104.25	0.15	0.0194	12"			360			
MH No. 4				43589									48"	11.5		1604.97	1594	2290
	3				43589	30.27	86.88	2.8	104.25	0.16	0.0155	12"			380			
MH No. 3				43589									48"	9.9		1597.48	1588.1	1910
	2				43589	30.27	86.88	2.8	104.25	0.16	0.016	12"			400			
MH No. 2				43589									48"	11.6		1595	1583.9	1510
	1				43589	30.27	86.88	2.5	104.25	0.17	0.0048	12"			380.38			
MH No. 1		Carpinus Dr		43589									48"	12.8		1592	1579.67	1129.62

Total Quantities

12" PVC	8560.38
10" PVC	1334.72
8" PVC	2425.28
Total Length	12320.38

APPENDIX F

Potential Upsizing Hydraulic Analysis

Average Dry Weather Flow from Dudek TM							
		(gpd)	(gpm)				
	School	6735	4.68				
F	ublic Facility	4424	3.07				
Medium Densit	y Residential	32430	22.52				
Total Clark LS I	nfluent Flow	43589	30.2701				

Flow Influent to MH #	Reach No.	Intersection	Trib Area (ac)	Ave Dry Influent to MH (gpd)	Ave Dry in Reach (gpd)	Ave Dry in Reach (gpm)	Design PDWF in Reach (gpm)	Design V (PDWF) (fps)	Max PWWF (gpm)	<mark>Max</mark> d/D (PWWF)	Slope	Sewer Size		MH Depth	Reach Length (ft)	Rim El	CL EI	Sta
MH No. 31		Day St	0	0									48"	9.1		1686.03	1677.3	13450
	30	limited by V	6.16		7238	5.03	14.43	1.7	324.52	0.12	0.0143	8"			400			
MH No. 30				7238									48"	10.3		1681.57	1671.6	13050
	29	limited by V	5.61		13830	9.60	27.56	2.1	326.78	0.5	0.0145	8"			400			
MH No. 29		Robinson St		13830									48"	10.2		1675.62	1665.8	12650
	28		5.55		20351	14.13	40.56	2.0	1424.98	0.45	0.0142	15"			400			
MH No. 28		Carroll St		20351									48"	9.3		1669.06	1660.1	12250
	27		9.83		31901	22.15	63.58	2.6	1424.98	0.42	0.0178	15"			500			
MH No. 27				31901									48"	10.7		1661.58	1651.2	11750
	26		6.13		39104	27.16	77.94	2.1	1424.98	0.51	0.0091	15"			350			
MH No. 26				39104								. – "	48"	11.4		1659.04	1648	11400
	25		4.69		44615	30.98	88.92	2.2	1424.98	0.53	0.0084	15"			375.28			
MH No. 25		Clark St		88204								. – "	48"	12.6		1657.01	1644.86	11024.72
	24		4.93		93997	65.28	187.34	2.7	1424.98	0.52	0.0088	15"			444.72			
MH No. 24				93997									48"	11.4		1651.7	1640.7	10580
	23		4.5		99284	68.95	197.88	2.9	1424.98	0.52	0.0089	15"			440			
MH No. 23				99284									48"	9.5		1646	1636.9	10140
	22		4.47		104536	72.59	208.35	3.0	1424.98	0.49	0.0105	15"			450			
MH No. 22		Haines St		104536									48"	12.5		1644	1632	9690
	21		7.39		113220	78.62	225.65	2.2	1424.98	0.67	0.004	15"			430			
MH No. 21				113220									48"	12.2		1642	1630.3	9260
	20		5.33		119482	82.97	238.13	2.3	1424.98	0.66	0.0041	15"			440			
MH No. 20		Florence St		119482									48"	13.0		1641.02	1628.5	8820
	19		3.76		123900	86.04	246.94	2.3	1424.98	0.66	0.0041	15"			440			
MH No. 19		Brown St		123900									48"	13.1		1639.32	1626.7	8380
	18				123900	86.04	246.94	2.3	1424.98	0.66	0.0041	15"			440			
MH No. 18				123900									48"	11.9		1636.34	1624.9	7940
	17				123900	86.04	246.94	2.1	1424.98	0.74	0.003	15"			440			
MH No. 17				123900									48"	2.9		1635	1632.6	7500
	16				123900	86.04	246.94	2.1	1424.98	0.74	0.003	15"			440			
MH No. 16		Mead St		123900									48"	13.8		1635.64	1622.3	7060
	15				123900	86.04	246.94	2.1	1424.98	0.74	0.003	15"			440			
MH No. 15				123900									48"	13.5		1634	1621	6620

Eastern Municipal Water District Mead Valley Cajalco Sewer Project Hydraulic Analysis

Flow Influent to MH #	Reach No.	Intersection	Trib Area (ac)	Ave Dry Influent to MH (gpd)	in Reach (gpd)	Ave Dry in Reach (gpm)	Design PDWF in Reach (gpm)	Design V (PDWF) (fps)	Max PWWF (gpm)	<mark>Max</mark> d/D (PWWF)	Slope	Sewer Size	MH Size	MH Depth	Reach Length (ft)	Rim El	CL El	Sta
	14				123900	86.04	246.94	2.1	1424.98	0.74	0.003	15"			440			
MH No. 14				123900									48"	17.1		1636.31	1619.7	6180
	13				123900	86.04	246.94	2.1	1424.98	0.74	0.003	15"			470			
MH No. 13		Alexander St		123900									48"	17.2		1635.02	1618.3	5710
	12	limiting reach,	max d/D		123900	86.04	246.94	2.1	1424.98	0.75	0.0029	15"			480			
MH No. 12				123900									48"	16.6		1633.05	1616.9	5230
	11	limiting reach,	max d/D		123900	86.04	246.94	2.1	1424.98	0.75	0.0029	15"			480			
MH No. 11				123900									48"	16.0		1631.04	1615.5	4750
	10	third limiting r	each, max	d/D	123900	86.04	246.94	2.1	1473.30	0.75	0.0031	15"			480			
MH No. 10		Una St		123900									48"	14.0		1627.46	1614	4270
	9				123900	86.04	246.94	3.1	1833.29	0.6	0.0094	15"			500			
MH No. 9				123900									48"	9.2		1618.03	1609.3	3770
	8				123900	86.04	246.94	3.0	1833.29	0.62	0.0083	15"			60			
MH No. 8		Barton St		123900									48"	9.1		1617.39	1608.8	3710
	7				123900	86.04	246.94	2.7	1833.29	0.69	0.0061	15"			460			
MH No. 7				123900									48"	10.5		1616	1606	3250
	6				123900	86.04	246.94	3.3	1833.29	0.58	0.011	15"			300			
MH No. 6				123900									48"	12.1		1614.29	1602.7	2950
	5				123900	86.04	246.94	2.6	1833.29	0.72	0.0057	15"			300			
MH No. 5				123900									48"	11.2		1611.65	1601	2650
	4				123900	86.04	246.94	4.0	1833.29	0.49	0.0194	15"			360			
MH No. 4				123900									48"	11.5		1604.97	1594	2290
	3				123900	86.04	246.94	3.7	1833.29	0.51	0.0155	15"			380			
MH No. 3				123900									48"	9.9		1597.48	1588.1	1910
	2				123900	86.04	246.94	3.7	1833.29	0.49	0.016	15"			400			
MH No. 2				123900									48"	11.6		1595	1583.9	1510
	1	second limitin	g reach, m	ax d/D	123900	86.04	246.94	2.6	1833.29	0.75	0.0048	15"			380.38			
MH No. 1		Carpinus Dr		123900									48"	12.8		1592	1579.67	1129.62

Total Quantities

12" PVC	8560.38
10" PVC	1334.72
8" PVC	2425.28
Total Length	12320.38

APPENDIX G

Clark Lift Station Condition Assessment Field Report

4.34 L3526 Clark St LS

Site Information

Figure 4.34-1 - Clark St LS Location Map [33.8369822, -117.2878794]

Clark St LS is located near 19519 Clark St in Perris, CA. Upgraded in 1993, it has the capacity for 150 gpm with two pumps in service. The following components were assessed by V&A during the condition assessment:

- 1. Pump Assemblies
- 2. Wet Wells

Non-destructive testing (UT and DFT) locations for Green Acres LS are illustrated in Figure 4.34-2 below.

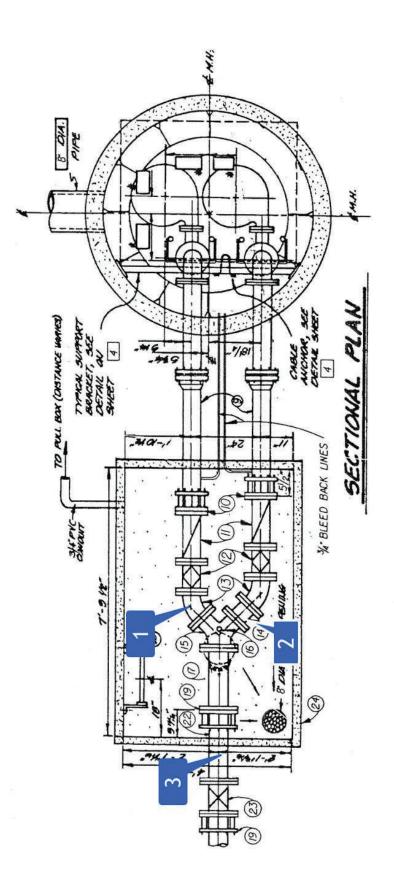


Figure 4.34-2 - Non-Destructive Testing Locations

V&A | Project No. 19-0224 | 252

Findings

Pump Assemblies

UT and DFT measurements 1-3 were taken at the locations shown in Figure 4.34-2. Band 4 was taken on the 8-in potable water regulated zone piping, with the UT/DFT reading location shown in the photos. The piping consisted primarily of 6-in ductile iron pipe. The results of the UT and DFT testing are shown in the tables below.

Table 4.34-1 - UT Measurements

Piping	Minimum (inches)	Maximum (inches)	Average (inches)	Max. Wall Loss (in.)	Maximum Metal Loss (%)
Pump Assembly 1	0.121	0.127	0.124	0.129	52% ⁽¹⁾
Pump Assembly 2	0.128	0.185	0.144	0.122	49% ⁽¹⁾
Common Discharge	0.420	0.426	0.418	0.010	2%
Potable Water Zone Piping	0.303	0.319	0.309	0.027	8%
	Pump Assembly 1Pump Assembly 2Common Discharge	Piping(inches)Pump Assembly 10.121Pump Assembly 20.128Common Discharge0.420	Piping(inches)(inches)Pump Assembly 10.1210.127Pump Assembly 20.1280.185Common Discharge0.4200.426	Piping (inches) (inches) (inches) Pump Assembly 1 0.121 0.127 0.124 Pump Assembly 2 0.128 0.185 0.144 Common Discharge 0.420 0.426 0.418	Piping (inches) (inches) (inches) Loss (in.) Pump Assembly 1 0.121 0.127 0.124 0.129 Pump Assembly 2 0.128 0.185 0.144 0.122 Common Discharge 0.420 0.426 0.418 0.010

⁽¹⁾ Assumed nominal thickness of 0.25-in, UT readings questionable

Table 4.34-2 - DFT Measurements

Band	Piping	Minimum (mils)	Maximum (mils)	Average (mils)	Recommended thickness (mils) ⁽¹⁾
1	Pump Assembly 1	8.2	14.8	11.6	6 to 9
2	Pump Assembly 2	7.5	19.1	12.6	6 to 9
3	Common Discharge	5.6	9.8	7.8	6 to 9
4	Potable Water Zone Piping	1.0	1.9	1.4	6 to 9

⁽¹⁾ Piping exposed to sunlight is recommended to have 4 to 6 mils of epoxy coating with an additional 2 to 3 mils of aliphatic polyurethane

Photo 4.34-1 through Photo 4.34-6 illustrate the general condition of the pump assemblies at Clark St LS.

Photo 4.34-1 - Pump Assemblies 1-2

Photo 4.34-2 - Pump Assemblies 1-2

Photo 4.34-3 - Common header

Photo 4.34-4 - Rust staining at flanges/bolts where coating has thinned (typical)

Photo 4.34-5 – Mead Valley Regulated Zone Piping Assembly

Photo 4.34-6 - Regulated Zone Piping Assembly UT-4 location

Comments: Piping and coating in good overall condition, surface corrosion evident where coating has thinned or flaked off Condition Rating: 2

Wet Wells

Photo 4.34-7 through Photo 4.34-12 illustrate the general condition of the Wet Well at Clark St LS.

Photo 4.34-7 - Wet well exterior

Photo 4.34-8 - Wet well, topside

Photo 4.34-9 – Submersible pump discharge piping heavily corroded throughout

Photo 4.34-10 - Coating failure and corrosion on discharge piping (closeup)

Photo 4.34-11 – Wet well interior (closeup)

Photo 4.34-12 – Wet well interior (closeup)

Comments: -Wet well liner in good condition -Wet well submersible pump discharge piping coating is failing with heavy corrosion throughout Condition Rating: 3

Additional findings:

Photo 4.34-13 - Corrosion throughout electrical panels

Photo 4.34-14 - Corrosion throughout electrical panels (typical)

Recommendations

Based on the findings of the Clark St LS condition assessment, V&A recommends the following for Hazen & Sawyer and the District to consider:

- 1. Touch-up coating as needed at flanges/bolts throughout aboveground piping, including the uncoated spool on the potable water piping.
- 2. Replace submersible pump discharge piping with fusion bonded epoxy-coated and lined steel piping.

APPENDIX H

Draft Geotechnical Investigation Report

GEOTECHNICAL INVESTIGATION

EASTERN MUNICIPAL WATER DISTRICT MEAD VALLEY SEWER IMPROVEMENTS

Riverside County, California

AL ISTAN LONG LONG

PREPARED FOR:

Mr. Nate Olivas Eastern Municipal Water District 2270 Trumble Road Perris, California 92570

PREPARED BY:

Atlas Technical Consultants LLC 6280 Riverdale Street San Diego, California 92120

DRAFT

January 13, 2023

6280 Riverdale Street San Diego, CA 92120 (877) 215-4321 | oneatlas.com

January 13, 2023

Atlas No. 190063P4.2 Report No. 1962-1

MR. NATE OLIVAS EASTERN MUNICIPAL WATER DISTRICT 2270 TRUMBLE ROAD PERRIS, CALIFORNIA 92570

Subject: Geotechnical Investigation Mead Valley Sewer Improvements Eastern Municipal Water District Riverside County, California

Dear Mr. Olivas,

In accordance with your request and our proposal No. 22-04013R2, Atlas performed a geotechnical investigation to assess the geologic conditions for the project, including potential geologic hazards, and to provide recommendations based on our findings. Our investigation consisted of a review of readily available geologic literature, site reconnaissance, exploratory borings, limited hydrogeologic testing and analysis, geotechnical laboratory testing, and the preparation of this report.

We appreciate the opportunity to be of service on this project. Should you have any questions related to this report, please contact the undersigned at your convenience.

Respectfully submitted, Atlas Technical Consultants LLC

DRAFT ONLY - DO NOT RELY ON THIS REPORT

Jason Dale, EIT Project Manager

DRAFT ONLY - DO NOT RELY ON THIS REPORT

Doug Skinner, PG 2472 Senior Engineering Geologist GT:SD:JRD:MM:ER:ds Distribution: olivasn@emwd.org Morteza Mirshekari, PhD, PE C92374 Senior Engineer

CONTENTS

1.	INTF	RODUCT	-ION1
2.	SCC	PE OF V	NORK1
	2.1	Investig	gations and Monitoring Wells1
	2.2	Geophy	vsical Survey1
	2.3	Laborat	tory Testing1
	2.4	Analysi	s and Report Preparation2
3.	SITE		ROJECT DESCRIPTION2
4.	GEC		AND SUBSURFACE CONDITIONS
	4.1	Geolog	ic Hazards4
		4.1.1	Fault-Rupture Hazard4
		4.1.2	CBC Seismic Design Parameters4
		4.1.3	Liquefaction and Dynamic Settlement5
		4.1.4	Flooding, Tsunamis, and Seiches5
		4.1.5	Landslides and Slope Stability5
		4.1.6	Subsidence
		4.1.7	Hydro-Consolidation6
5.	CON		ONS6
6.	REC		IDATIONS6
	6.1	Earthwo	ork6
		6.1.1	Site Preparation7
		6.1.2	Excavation Characteristics7
		6.1.3	Oversized Material7
		6.1.4	Temporary Excavations7
		6.1.5	Temporary Shoring8
		6.1.6	Temporary Dewatering8
		6.1.7	Remedial Grading – Manhole Foundations8
		6.1.8	Expansive Soil
		6.1.9	Compacted Fill
		6.1.10	Imported Soil9
		6.1.11	Bottom Stabilization9
			Grading Plan Review9
	6.2	•	es9
		6.2.1	Pipeline Support9
		6.2.2	Backfill9
		6.2.3	Pipe Bedding10
		6.2.4	Thrust Blocks
		6.2.5	Modulus of Soil Reaction10

	6.3	Manho	oles	10
		6.3.1	Foundations	10
		6.3.2	Allowable Soil Bearing Pressure	11
		6.3.3	Manhole Backfill	11
	6.4	Prelim	ninary Pavement Section Recommendations	11
	6.5	Soil C	Corrosivity	12
	6.6	Geote	echnical Engineering During Construction	12
7.	CLO	SURE		12
8.	REF	ERENC	CES	13

TABLES

Table 1:	Observed Groundwater Level	.4
Table 2:	2019 California Building Code / ASCE 7-16 Site Specific Seismic Parameters	.5
Table 3:	Preliminary Pavement Structural Sections	12

FIGURES

Figure 1:	Site Vicinity Map Subsurface Exploration Maps Regional Geology Map
Figure 2A & 2B:	
Figure 3:	
Figure 4:	California Fault Activity Map

APPENDICES

Appendix I	Subsurface Exploration
Appendix II	Laboratory Testing

1. INTRODUCTION

This report presents the results of the geotechnical investigation Atlas performed for the subject project. It is our understanding the project will consist of the design and construction of approximately 3½ miles of new sewer pipeline along Cajalco Road in Riverside County, California. Figure 1 presents the site vicinity.

2. SCOPE OF WORK

2.1 Investigations and Monitoring Wells

Atlas performed a geologic investigation to address potential geologic hazards and geotechnical conditions that could impact the proposed construction. Pertinent documents reviewed included published reports and mapping, aerial photographs, in-house geotechnical reports, and available reports by others. Atlas explored subsurface conditions by drilling thirteen (13) borings to depths of up to approximately 41½ feet below the existing ground surface using limited access and truck-mounted drill rigs equipped with a hollow stem auger in September 2022. Additionally, Atlas will install two temporary groundwater monitoring wells to a depth of about 40 feet below ground surface in January 2023. Figure 2 presents the approximate locations and depths of the borings and proposed monitoring wells.

An Atlas engineer and geologist logged the borings and collected samples of the material encountered for geotechnical laboratory testing. Soils and rocks recovered during the field investigation were observed in the field for soil and/or groundwater contamination with visual and olfactory methods. Soils were classified according to the Unified Soil Classification System illustrated in the Subsurface Exploration Legend (Appendix I). The rocks encountered were classified in general accordance with the California Department of Transportation (Caltrans) rock classification system. The boring logs are presented in Appendix I.

2.2 Geophysical Survey

The scope of our work also included performing a geophysical survey at select locations on the project alignment. The geophysical study is currently underway and will be included in the final report.

2.3 Laboratory Testing

Selected samples from the exploratory borings were tested to evaluate pertinent soil classification and engineering properties. The laboratory testing consisted of in-situ moisture and density, particle-size distribution, percent finer than #200 sieve, corrosivity, direct shear, expansion index, Atterberg limits, and R-value. The laboratory testing standards and results are presented in Appendix II.

2.4 Analysis and Report Preparation

The results of the field and laboratory tests were evaluated to develop conclusions and recommendations, including the following:

- A plot plan showing the boring locations
- Exploration logs with soil characterization detailing the subsurface conditions noted at the boring locations
- A description of the above ground geologic conditions
- Groundwater levels and the necessity for dewatering
- Excavation characteristics of the subsurface materials encountered
- Backfill recommendations and the suitability of excavated materials for use as backfill and bedding
- Allowable temporary excavation side slope and shoring recommendations
- Lateral earth pressures and resistance to lateral loads
- Support for the pipeline
- Potential pipeline settlements
- Appropriate types of bedding and backfill materials as well as placement and compaction procedures
- Soil modulus E' for pipeline design
- Subgrade compaction beneath pavements
- New flexible pavement structural sections
- Corrosivity of earth materials

3. SITE AND PROJECT DESCRIPTION

The project alignment is along Cajalco Road between Wood Road and Robinson Street in Riverside County, California. The site topography descends towards the east, with site elevations along the alignment ranging from approximately 1577 to 1671 above mean sea level.

4. GEOLOGY AND SUBSURFACE CONDITIONS

The site is located within the Peninsular Ranges Geomorphic Province of California, which stretches from the Los Angeles basin south into Baja California. This province is characterized as a series of northwest-trending mountain ranges separated by subparallel fault zones and a coastal plain of subdued landforms. The mountain ranges are underlain primarily by Mesozoic metamorphic rocks that were intruded by plutonic rocks of the southern California batholith, while the coastal plain is underlain by subsequently deposited marine and non-marine sedimentary formations. The site is located in the coastal plain. The materials observed in our borings consisted of fill, very old axial-channel deposits, young wash deposits, and Val Verde tonalite

(granitic rock). Figure 3 presents the regional geology, and descriptions of the materials encountered are provided below.

<u>Fill (Qf)</u>: Fill was encountered in some of our borings below the existing ground surface and extends to depths of up to approximately 5 feet below ground surface. The fill materials encountered generally consisted of moist, medium dense sandy silt, silty sand, and clayey sand. Debris and boulders may be encountered.

<u>Very old axial-channel deposits (Qvoa)</u>: Very old axial-channel deposits were encountered in a number of our borings at both existing ground surface and below the fill and extends up to about 24 feet below ground surface. The materials encountered generally consisted of moist, loose to medium dense poorly graded sand with silt, and loose to dense silty and clayey sand.

<u>Young wash deposits (Qywa):</u> Young wash deposits were encountered below fill in Borings B-12S and B-13S and extends to a depth of up to approximately 18 feet below ground surface. The materials encountered generally consisted of moist, medium dense to very dense silty and clayey sand.

<u>Val Verde tonalite (Kvt)</u>: Val Verde tonalite was encountered in each of the borings below the surficial soils and extends to the total depths explored. The materials encountered generally consisted of intensely weathered to decomposed, very soft igneous rock. The excavated material could be characterized as moist to wet, poorly graded sand with silt or clay, silty and clayey sand, sandy silt, and hard, lean clay with sand. Gravels and cobble may be expected. Boulders are possible.

Groundwater: Groundwater was observed as shallow as 18 feet below existing ground surface. Available literature indicates the groundwater could be shallower than approximately 10 feet below ground surface near Boring B-15S (SWRCB, 2022). It should be recognized that groundwater conditions may vary at a site over time. Fluctuations in the groundwater level may occur due to variations in ground surface topography, subsurface geologic conditions and structure, rainfall, irrigation, broken pipes, changes in site drainage, and other factors. These types of conditions can be most effectively assessed at the time of construction. Table 1 presents the observed groundwater levels relative to the ground surface.

To assist in assessing groundwater levels during construction, temporary groundwater monitoring wells will be installed at boring locations B-2S and B-6S to observe the groundwater activity. The monitoring wells should be periodically monitored, and groundwater elevations be recorded by a qualified individual. A diagram presenting the well construction is in Appendix I.

Boring Location	Depth to Encountered Groundwater (ft)	Boring Location	Depth to Encountered Groundwater (ft)
B-1S	22	B-9S	25
B-2S	Pending	B-10S	27
B-3S	26	B-11S	Not encountered
B-4S	18	B-12S	39
B-5S	33	B-13S	Not encountered
B-6S	Pending	B-14S	29
B-7S	37	B-15S	28
B-8S	Not encountered	E	mpty

Table 1: Observed Groundwater Level

4.1 Geologic Hazards

4.1.1 Fault-Rupture Hazard

Faulting in the Riverside County area is dominantly characterized by a series of Quaternary-age and older fault zones that typically consist of several individual echelon faults, generally striking in a northerly to northwesterly direction. Active fault zones are those that have shown conclusive evidence of faulting during the Holocene Epoch (the most recent 11,000 years) while potentially active fault zones have demonstrated movement during the Pleistocene Epoch (11,000 to 2.6 million years before the present) but no evidence of movement during Holocene time. Faults that can be shown to have experienced no movement within the Holocene or Pleistocene Epochs are generally considered to be inactive. The closest active fault, the Glen Ivy North fault, is about 10 miles west of the site (Jennings, 2010). Figure 4 presents the California fault activity. The project alignment is not located in an Alquist-Priolo Earthquake Fault Zone. No signs of faulting and no active faults are known to underlie or project toward the site. The probability of fault rupture is considered negligible.

4.1.2 CBC Seismic Design Parameters

A geologic hazard likely to affect the project is ground shaking because of movement along an active fault zone in the vicinity of the subject site (USGS, 2020). Based on the subsurface conditions encountered during our investigation and available online resources (Wills et al. 2015), the alignment could generally be classified as Site Class C. The mapped site coefficients and adjusted earthquake spectral response parameters in accordance with the 2019 CBC are presented below in Table 2. Please note that the seismic parameters are provided for the approximate coordinates tabulated for the site.

Site C	coordinates	
Latitude	Longitude	
33.8391°	-117.2819°	
Site Coefficients and Spectral Response	Acceleration Parameters	Values
Site Class		C – Very Dense Soil
Site Coefficients, H	- a	1.2
Site Coefficients, H	F _v	1.446
Spectral Response Acceleration a	t Short Period, S₅	1.5g
Spectral Response Acceleration at 1	-Second Period, S ₁	0.554g
Design Spectral Acceleration at S	Short Period, SDS	1.2g
Design Spectral Acceleration at 1-S	Second Period, S _{D1}	0.534g
Site Modified Peak Ground Acce	eleration, PGA _M	0.6g

Table 2: 2019 California Building Code / ASCE 7-16 Site Specific Seismic Parameters

4.1.3 Liquefaction and Dynamic Settlement

Liquefaction occurs when loose, saturated, generally fine sands and silts are subjected to strong ground shaking. The soils lose shear strength and become liquid, potentially resulting in large total and differential ground surface settlement as well as possible lateral spread during an earthquake. Liquefiable material is not mapped along the project alignment. Because of the relatively dense soils and depth to groundwater, it is our opinion that the potential liquefaction and dynamic settlement significantly affecting the proposed project is low.

4.1.4 Flooding, Tsunamis, and Seiches

Flood Insurance Rate Maps via the Federal Emergency Management Agency (FEMA) Flood Hazard Map online database were reviewed to evaluate if the subject site is located within an area susceptible to flooding (FEMA, 2022). The project site is designated as Flood Hazard Zone A, which designates the areas with a 1% annual chance of flooding and a 26% chance of flooding over the life of a 30-year mortgage. Published depth or base flood elevations are not provided for Zone A. The potential for flooding should be considered.

The site is not located within a mapped area on the State of California Tsunami Inundation Maps (CDC, 2022b). Seiches are periodic oscillations in large bodies of water such as lakes, harbors, bays, or open reservoirs. The site is not located adjacent to any bodies of water subject to seiches.

4.1.5 Landslides and Slope Stability

There are no mapped or known landslides underlying or adjacent to the project site (CDC, 2021a). Additionally, evidence of slope instabilities or landslides was not observed at the time of our site reconnaissance. The potential for slope instabilities or landslides to affect the site is considered low.

4.1.6 Subsidence

The project is not located in an area of known subsidence associated with fluid withdrawal (groundwater or petroleum) (USGS, 2022). Due to this, as well as the presence of very dense deposits, the potential for subsidence is low.

4.1.7 Hydro-Consolidation

Hydro-consolidation can occur in recently deposited sediments (less than 10,000 years old) that were deposited in a semi-arid environment. Examples of such sediments are eolian sands, alluvial fan deposits, and mudflow sediments deposited during flash floods. The pore spaces between the particle grains can re-adjust when inundated by groundwater, causing the material to consolidate. Due to the relatively dense and moist nature of the material encountered beneath the site, the potential for hydro-consolidation occurrence in the subsurface layers is considered low.

5. CONCLUSIONS

Based on the results of our investigation, we consider the project feasible from a geotechnical standpoint provided that the recommendations of this report are followed. In our opinion, the site conditions are suitable to install the pipelines using traditional open excavation trenching techniques; however, the contractor should be prepared for excavating in very dense granular materials, as well as igneous rock formations. The presence of cobbles and boulders are also expected at the site. There are no known geologic hazards of sufficient magnitude that preclude the intended improvements. The main geotechnical considerations affecting the project is the potential for difficult trench excavations and potentially groundwater. The materials anticipated below the pipeline depths are generally expected to provide good pipeline support. However, dewatering is anticipated depending on the elevation of groundwater at the time of construction.

6. **RECOMMENDATIONS**

The remainder of this report presents recommendations regarding earthwork construction as well as preliminary geotechnical recommendations for the design of the proposed improvements. These recommendations are based on empirical and analytical methods typical of the standard-of-practice in southern California. If these recommendations appear not to address a specific feature of the project, please contact our office for additions or revisions to the recommendations.

6.1 Earthwork

Grading and earthwork should be conducted in accordance with the local standards and the recommendations of this report. The following recommendations are provided regarding specific aspects of the proposed earthwork construction. These recommendations should be considered subject to revision based on field conditions observed by our office during construction.

6.1.1 Site Preparation

Site preparation should begin with the removal of existing improvements, vegetation, and debris. Subsurface improvements that are to be abandoned should be removed, and the resulting excavations should be backfilled and compacted in accordance with the recommendations of this report. Pipeline abandonment can consist of capping or rerouting at the project perimeter and removal within the project perimeter. If appropriate, abandoned pipelines can be filled with grout or slurry as recommended by and observed by the geotechnical consultant.

6.1.2 Excavation Characteristics

It is anticipated that excavation can be achieved with heavy-duty earthwork equipment in good working order. Excavations in fill may be locally unstable and may contain construction debris, cobbles, or boulders. Difficult drilling and excavation should be anticipated in areas with dense to very dense granular materials and/or igneous rock. The contractor should mobilize equipment capable of excavating granitic materials with variable fracturing, weathering, rock abrasiveness, and strength/hardness rock conditions. Rock breakers, carbide tipped teeth, or carbide/diamond tipped coring equipment may be required to excavate/drill hard rock materials.

6.1.3 Oversized Material

Excavations may generate oversized material. Oversized material is defined as rocks or cemented clasts greater than 6 inches in largest dimension. Oversized material should be broken down to no greater than 6 inches in largest dimension for use toward non-structural fill purposes, such as landscape fill, or disposed of outside the site perimeter.

6.1.4 Temporary Excavations

Temporary excavations 4 feet deep or less can be made vertically. Temporary excavations deeper than 4 feet should not be steeper than 1½:1 (horizontal: vertical), per Cal/OSHA Type C soil classification. Excavations in competent bedrock can be made vertically. Unweathered (i.e., fresh), unfractured rock is considered competent. The faces of temporary slopes should be inspected daily by the contractor's competent person before personnel are allowed to enter the excavation. Zones of potential instability, sloughing, or raveling should be brought to the attention of the engineer and corrective action implemented before personnel begin working in the trench.

Slopes steeper than those described above will require shoring. Soldier piles and lagging, corrugated metal pipe, internally braced shoring such as trench boxes or speed shoring could be used. If trench boxes or metal pipe are used, the soil immediately adjacent to the shoring is not directly supported. Ground surface deformations adjacent to the excavation could be greater when these methods are used compared to other methods of shoring leading to distress to overlying improvements.

If open trenches are to be maintained during the rainy season, berms are recommended along the tops of the trenches to prevent runoff water from entering the excavation.

6.1.5 Temporary Shoring

For design of cantilevered shoring, an active soil pressure equal to a fluid weighing 40 pounds per cubic foot (pcf) can be used for level retained ground or 65 pcf for 2:1 (horizontal:vertical) sloping ground. A passive soil pressure equal to a fluid weighing 330 pcf can be used for the design of cantilevered shoring. These values assume that shoring will take place above the groundwater level. The passive pressure should be reduced by one half below the groundwater table. The surcharge loads on shoring from traffic and construction equipment adjacent to the excavation can be modeled by assuming an additional 2 feet of soil behind the shoring.

6.1.6 Temporary Dewatering

Groundwater was observed as shallow as 18 feet below existing ground surface. Available literature indicates the groundwater could be shallower than approximately 10 feet. Groundwater seepage may occur locally due to local irrigation or following heavy rain. An experienced and qualified specialty contractor should design the dewatering system. The contractor's geotechnical engineer should review the design.

6.1.7 Remedial Grading – Manhole Foundations

Proposed manhole foundations can be supported by firm and unyielding formational material, 2 feet of compacted fill, or geogrid. If placed on compacted fill, the on-site soils should be excavated to a depth of at least 2 feet below planned subgrade elevation. If competent, formational materials are exposed, excavation need not be performed. An Atlas representative should observe conditions exposed in the bottom of excavations to evaluate whether additional excavation is recommended.

6.1.8 Expansive Soil

The on-site materials tested have expansion indices ranging from 18 to 38, classified as very low to low expansion potential. The grading and foundation recommendations presented in this report assume materials with a low expansion potential.

6.1.9 Compacted Fill

On-site materials, except for soil containing roots, debris, and rock greater than 6 inches, can be used as compacted fill or trench backfill. Fill and backfill should be placed in horizontal lifts at a thickness appropriate for the equipment spreading, mixing, and compacting the material, but generally should not exceed 8 inches in loose thickness. Fill and backfill should be moisture conditioned within 2% of optimum moisture content and compacted to at least 90% relative compaction. The top 12 inches of subgrade beneath pavement should be compacted to at least 95%. The maximum dry density and optimum moisture content for evaluating relative compaction should be obtained using ASTM D1557.

6.1.10 Imported Soil

Imported soil should consist of predominately granular soil, free of organic matter, and rocks less than 6 inches. Imported soil should be observed and, if appropriate, tested by Atlas prior to transport to the site.

6.1.11 Bottom Stabilization

Although not anticipated, in areas encountering wet, soft or yielding excavations bottoms, a geogrid reinforced soil mat could be installed to provide support for proposed manhole foundation construction. To stabilize soft or yielding bottoms, Atlas recommends placing one layer of Tensar® Triax TX-160 reinforcing geogrid or equivalent on the removal surface (e.g. excavation bottom) followed by at least 6 inches of aggregate base compacted using lightweight equipment to a relative compaction of 90%. A second layer of geogrid followed by at least 6 inches of compacted based should be placed. If yielding is still observed upon proof rolling, an additional layer of geogrid should be placed on the compacted base followed by at least 6 inches of aggregate base.

6.1.12 Grading Plan Review

Atlas should review the grading plans and earthwork specifications to ascertain whether the intent of the recommendations contained in this report have been implemented, and that no revised recommendations are needed due to changes in the development scheme.

6.2 **Pipelines**

6.2.1 Pipeline Support

It is anticipated that most of the materials along the pipeline alignment will provide adequate support for the pipe, although loose, soft, and otherwise unsuitable materials could be encountered. Unsuitable materials encountered near trench bottom levels should be excavated to competent material as determined by the geotechnical consultant. The excavated materials can be replaced with compacted fill or with pipe bedding material, as described below. Unsuitable materials should be removed from the full width of the trench. The bottoms of the excavations should be observed by the geotechnical consultant prior to placement of pipe bedding.

6.2.2 Backfill

Utility trench sections should conform to the minimum requirements of the EMWD and local jurisdictions. Backfill should be placed in 6-inch to 8-inch thick loose lifts, moisture conditioned to near optimum moisture content, and compacted to at least 90% relative compaction.

On-site materials, except for soil containing roots, debris, and rock greater than 6 inches, can be used as compacted fill or trench backfill, provided that they have an expansion index of 50 or less. The maximum dry density and optimum moisture content for the evaluation of relative compaction should be determined in accordance with ASTM D1557.

6.2.3 Pipe Bedding

Pipe bedding as specified in the "Greenbook" can be used. Bedding material should consist of clean sand having a sand equivalent not less than 30 and should extend to at least 12 inches above the top of pipe. Alternative materials meeting the intent of the bedding specifications are also acceptable. Samples of materials proposed for use as bedding should be provided to the engineer for inspection and testing before the material is imported for use on the project. The onsite materials are not expected to meet "Greenbook" bedding specifications. The pipe bedding material should be placed over the full width of the trench. After placement of the pipe, the bedding should be brought up uniformly on both sides of the pipe to reduce the potential for unbalanced loads. No voids or uncompacted areas should be left beneath the pipe haunches. Ponding or jetting the pipe bedding should not be allowed.

6.2.4 Thrust Blocks

For level ground conditions, a passive earth pressure of 330 pounds per square foot (psf) per foot of depth below the lowest adjacent final grade can be used to compute allowable thrust block resistance. A value of 140 psf per foot should be used below groundwater level, if encountered.

6.2.5 Modulus of Soil Reaction

A modulus of soil reaction (E') of 1,000 pounds per square inch can be used to evaluate the deflection of buried flexible pipelines. This value assumes that granular bedding material is placed adjacent to the pipe and is compacted to at least 90% relative compaction.

6.3 Manholes

6.3.1 Foundations

The planned manholes can be supported on mat foundations with bottom levels on compacted fill, reinforced geogrid mats, or competent formational material.

Thickness and reinforcement of the mat foundation should be in accordance with the recommendations of the project structural engineer. Mat foundations typically experience some deflection due to loads placed on the mat and the reaction of the soils underlying the mat. A design modulus of subgrade reaction, K, of 150 pounds per cubic inch (pci) may be used in evaluating such deflections on dense to very dense granular soils or formational materials, and 75 pci on other loose soils. These values are based on an area of one square foot and should be adjusted for large mats. Adjusted values of the modulus of subgrade reaction, K_{BxB}, can be obtained from the following equation for square mats of various widths:

$$K_{B\times B} = K \left[\frac{\mathrm{B}+1}{\mathrm{2B}} \right]^2 (pci)$$

Where, B is the width of the mat in feet.

Where the mat slab is rectangular, adjusted values of the modulus of subgrade reaction, K', can be obtained from the following equation:

$$K' = \frac{K_{B \times B}(1 + 0.5\left(\frac{B}{L}\right))}{1.5}(pci)$$

Where, B is the width and L is the length of the mat in feet.

6.3.2 Allowable Soil Bearing Pressure

The planned manholes can be supported on mat foundations with bottom levels on compacted fill, reinforced geogrid mats, or competent formational material. An allowable bearing capacity of 3,000 psf can be used. The bearing value can be increased by $\frac{1}{3}$ when considering short term loads.

Lateral loads will be resisted by friction between the bottoms of footings and passive pressure on the faces of footings and other structural elements below grade. An allowable coefficient of friction of 0.30 can be used. Passive pressure can be computed using a lateral pressure value of 300 psf per foot of depth below the ground surface for level ground conditions. Reductions for sloping ground should be made. The passive pressure can be increased by ¹/₃ when considering the total of loads, including wind or seismic forces. The upper 1 foot of soil should not be relied on for passive support unless the ground is covered with pavements or slabs.

6.3.3 Manhole Backfill

Manhole backfill should consist of granular, free-draining material having a sand equivalent of 20 or more. The backfill zone is defined by a 1:1 plane projected upward from the bottom of the manhole. Expansive or clayey soil should not be used. Backfill should be compacted to at least 90% relative compaction. Backfill should not be placed until the manhole walls have achieved adequate structural strength. Compaction of manhole backfill will be necessary to minimize settlement of the backfill and overlying settlement-sensitive improvements. However, some settlement should still be anticipated. Alternatively, a controlled low-strength material such as sand cement slurry may be considered for backfill. The controlled low-strength material should be thoroughly consolidated, have a maximum slump of 4 inches, and the slurry combined graded should meet the requirements of the local authority with jurisdiction.

6.4 Preliminary Pavement Section Recommendations

Atlas utilized the Caltrans Highway Design Manual (Caltrans, 2020) to prepare preliminary recommendations for flexible pavements. An R-value of 13 and assumed Traffic Indexes of 7, 9, and 11 were used for the design of preliminary pavement sections. The actual subgrade support characteristics should be evaluated after grading and final pavement sections are provided. Table 3 presents recommended flexible structural sections for the assumed Traffic Indexes and subgrade R-value:

Traffic Type	Traffic Index	AC ¹ over AB ² (inches)	Full Depth AC (inches)
	7.0	6 over 10	11
Roadways	9.0	6 over 18	16
	11.0	10 over 18	22

Table 3: Preliminary Pavement Structural Sections

¹ AC: Asphalt Concrete

² AB: Aggregate Base

The top 12 inches of subgrade should be scarified, moisture conditioned to near optimum moisture content, and compacted to at least 95% relative compaction (ASTM D1557). Soft or yielding areas should be removed and replaced with compacted fill or aggregate base. Aggregate base and asphalt concrete should conform to the Caltrans Standard Specifications and should be compacted to at least 95% relative compaction. Aggregate base should have an R-value of not less than 78. All materials and methods of construction should conform to good engineering practices and Caltrans standard specifications.

6.5 Soil Corrosivity

Representative samples of the on-site soils from the project alignment were tested to evaluate corrosion potential. The test results are presented in Appendix II. The project design engineer can use the sulfate results in conjunction with ACI 318 to specify the water/cement ratio, compressive strength and cementitious material types for concrete exposed to soil. A corrosion engineer should be contacted to provide specific corrosion control recommendations.

6.6 Geotechnical Engineering During Construction

The geotechnical engineer should review project plans and specifications prior to bidding and construction to check that the intent of the recommendations in this report has been incorporated. Observations and tests should be performed during construction. Atlas recommends a geotechnical engineer or engineering geologist be on site to observe tunneling operations. If the conditions encountered during construction differ from those anticipated based on the subsurface exploration program, the presence of the geotechnical engineer during construction will enable an evaluation of the exposed conditions and modifications of the recommendations in this report or development of additional recommendations in a timely manner.

7. CLOSURE

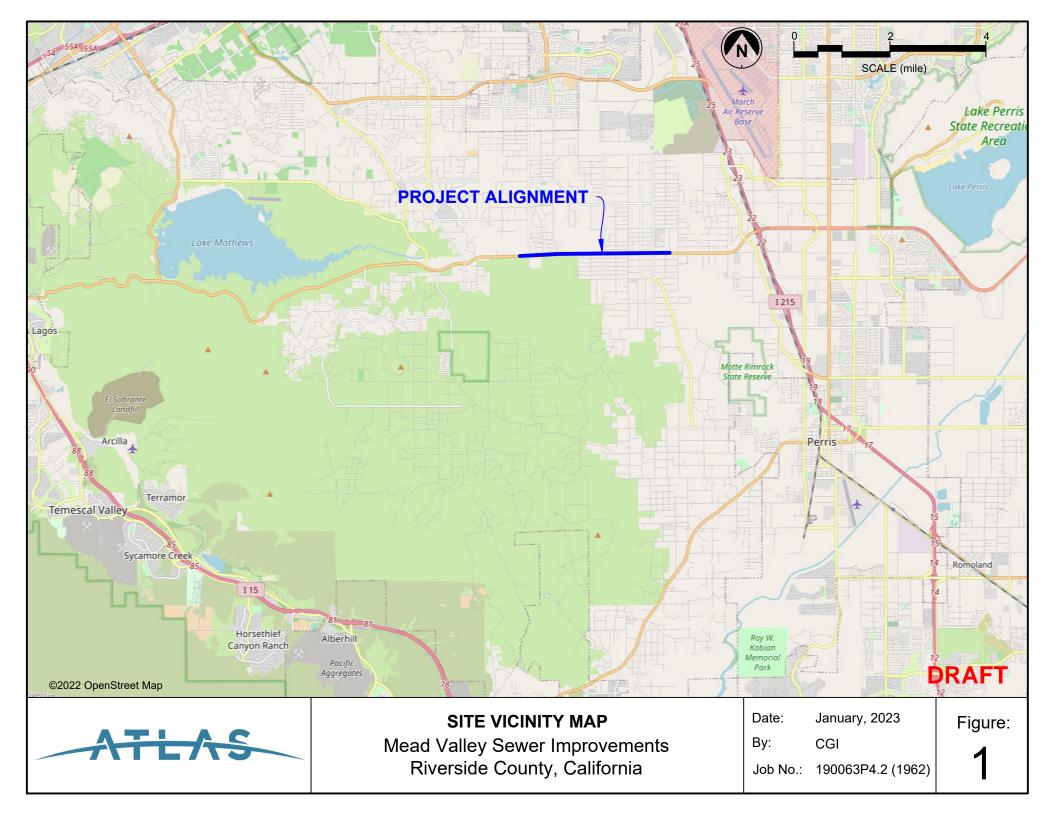
Atlas should be advised of changes in the project scope so that the recommendations contained in this report can be evaluated with respect to the revised plans. Changes in recommendations will be verified in writing. The findings in this report are valid as of the date of this report. Changes in the condition of the site can occur with the passage of time, whether they are due to natural processes or work on this or adjacent areas. In addition, changes in the standards of practice and government regulations can occur. Thus, the findings in this report may be invalidated wholly or

in part by changes beyond our control. This report should not be relied upon after a period of two years without a review by us verifying the suitability of the conclusions and recommendations to site conditions at that time.

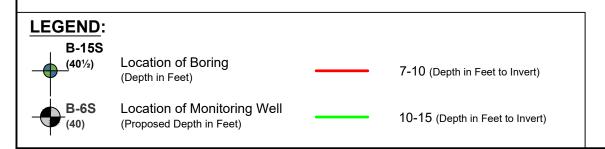
In the performance of our professional services, we comply with that level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions and in the same locality. The client recognizes that subsurface conditions may vary from those encountered at the boring locations and that our data, interpretations, and recommendations are based solely on the information obtained by us. We will be responsible for those data, interpretations, and recommendations, but shall not be responsible for interpretations by others of the information developed. Our services consist of professional consultation and observation only, and no warranty of any kind whatsoever, express or implied, is made or intended in connection with the work performed or to be performed by us, or by our proposal for consulting or other services, or by our furnishing of oral or written reports or findings.

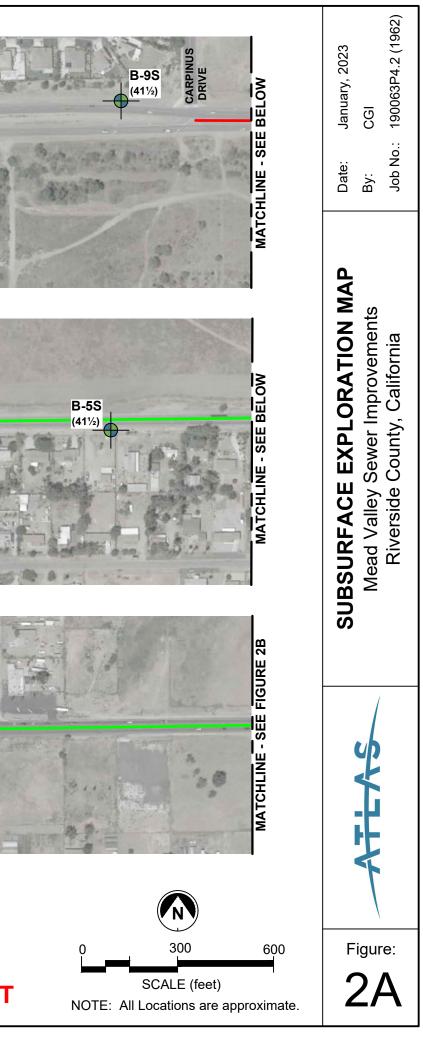
8. **REFERENCES**

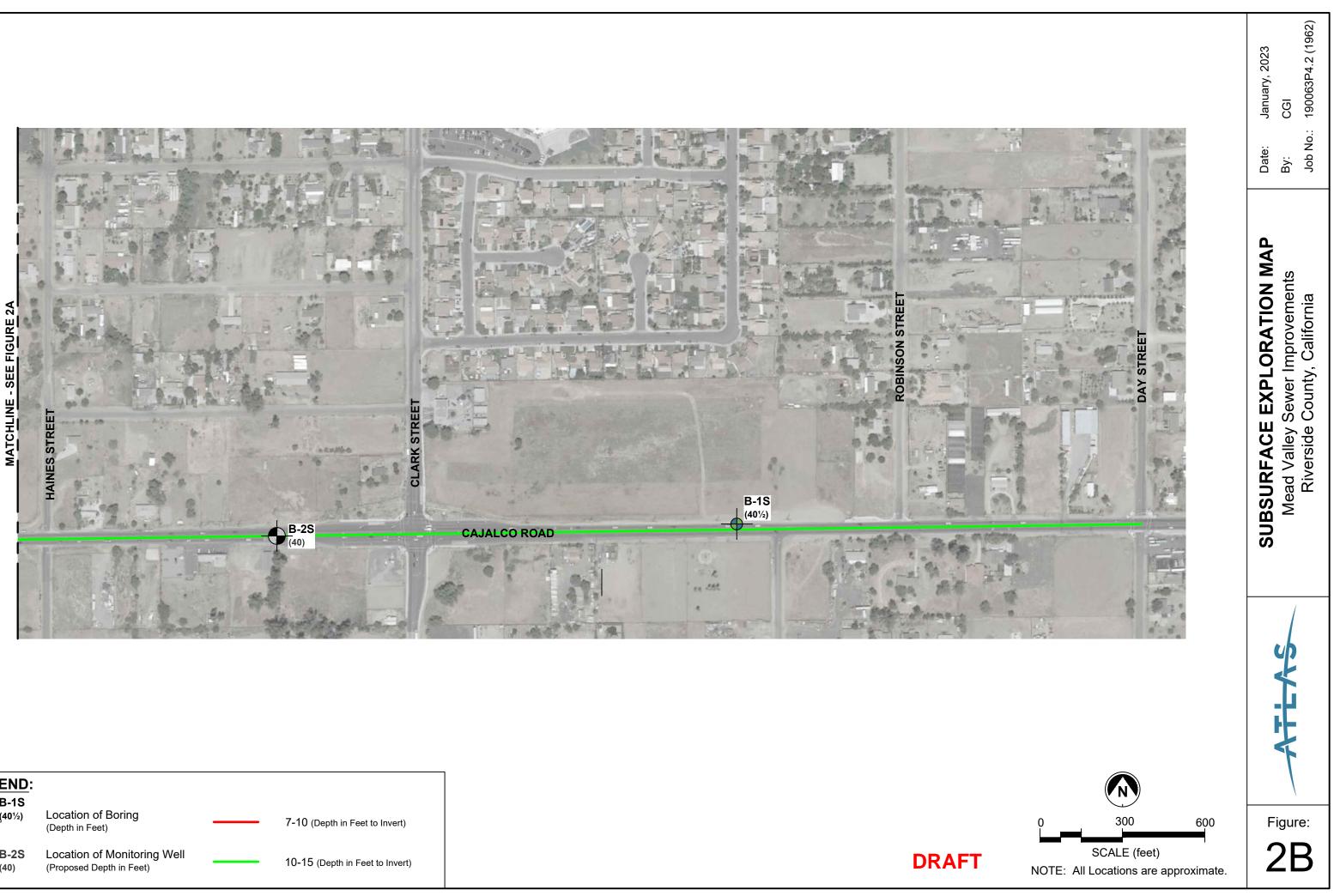
- California Department of Conservation (CDC), 2022a, Landslide Inventory Interactive Map, accessed in December: https://maps.conservation.ca.gov/cgs/lsi/app/
- California Department of Conservations (CDC), 2022b, California Tsunami Maps and Data, accessed in December: https://www.conservation.ca.gov/cgs/tsunami/maps
- California Department of Transportation (Caltrans), 2018, Standard Specifications.
- California Department of Transportation (Caltrans), 2020, Highway Design Manual, accessed in December: https://dot.ca.gov/programs/design/manual-highway-design-manual-hdm
- California Emergency Management Agency, California Geological Survey, University of Southern California (Cal EMA), 2009, Tsunami Inundation Map for Emergency Planning, June 1.
- Federal Emergency Management Agency (FEMA), 2022, FEMA Flood Map Service Center, accessed in December: https://msc.fema.gov/portal/home

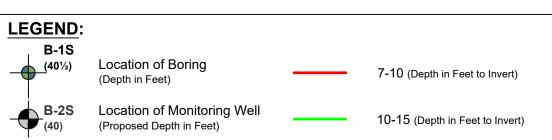

Historic Aerials, 2022, https://historicaerials.com/viewer, accessed in December.

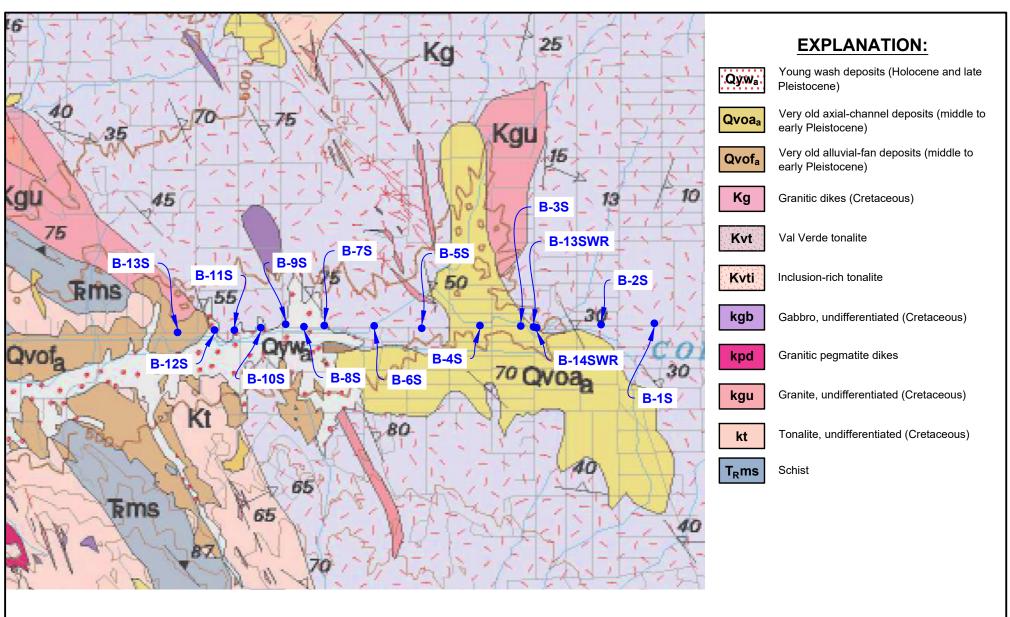
- International Code Council (2018), 2019 California Building Code, California Code of Regulations, Title 24, Part 2, Volume 2 of 2, Based on the 2018 International Existing Building Code, Effective January 1, 2020.
- Jennings, C.W. and Bryant, W.A., 2010, Fault Activity Map of California, California Geologic Survey, Geologic Data Map No. 6.
- Morton, D.M and Miller, F.K., 2006, Geologic map of the San Bernadino and Santa Ana 30' x 60' Quadrangles, California, U.S. Geological Survey, Scale 1:100,000.

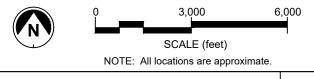

- State Water Resources Control Board (SWRCB), 2022, Geotracker, accessed in December: https://geotracker.waterboards.ca.gov/
- Structural Engineers Association of California (SEAOC), 2020, OSHPD Seismic Design Maps, accessed in May 2022: https://seismicmaps.org
- U.S. Geological Survey (USGS), 2020a, USGS Earthquake Scenario Map, accessed in May 2022: https://earthquake.usgs.gov/scenarios/catalog/bssc2014/
- U.S. Geological Survey (USGS), 2020b, USGS Geologic Hazards Science Center, U.S. Quaternary Faults, accessed in May 2022: https://usgs.maps.arcgis.com/ apps/webappviewer/
- U.S. Geological Survey (USGS), 2022, Areas of Land Subsidence in California, accessed in December: https://ca.water.usgs.gov/land_subsidence/california-subsidence-areas.html







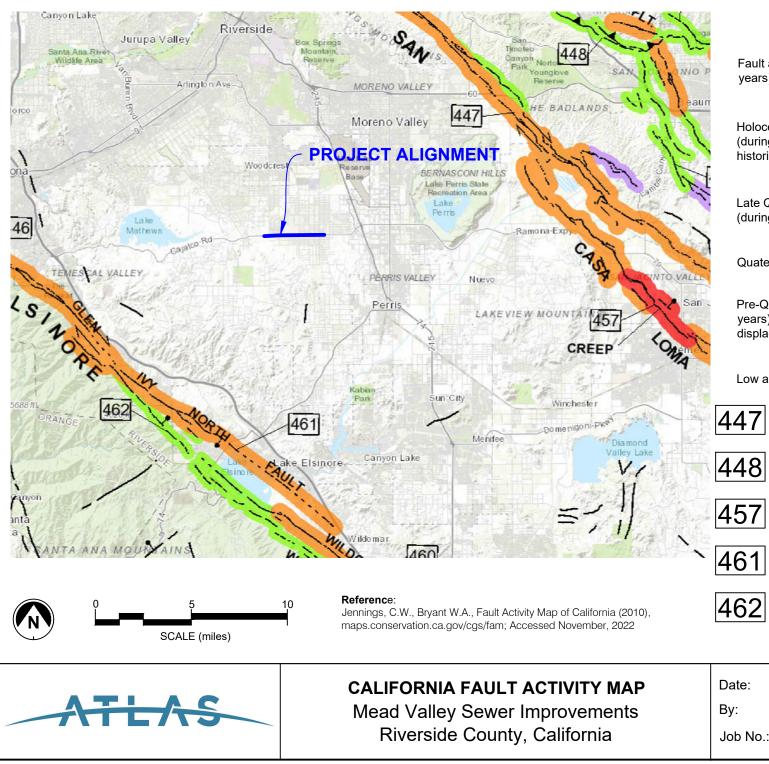



DRAFT

Reference:

Morton, D.M. and Miller, F.K., 2006, Geologic map of the San Bernardino and Santa Ana 30' x 60' quadrangles, California, U.S. Geological Survey, 1:100,000.

DRAFT



REGIONAL GEOLOGY MAP

Mead Valley Sewer Improvements Riverside County, California Date: January, 2023 By: CGI

Figure:

Job No.: 190063P4.2 (1962)

EXPLANATION:

Fault along which historic (last 200 years) displacement has occurred

Holocene fault displacement (during past 11,700 years) without historic record.

Late Quaternary fault displacement (during past 700,000 years).

Quaternary fault (age undifferentiated).

Pre-Quaternary fault (older than 1.6 million years) or fault without recognized Quaternary displacement.

____2

Low angle fault (barbs on upper plate).

Claremont fault - San Jacinto fault zone (concealed)

Cherry Valley fault - San Gorgonio Pass fault zone (concealed)

Casa Loma fault - San Jacinto fault zone (concealed)

Glen Ivy North fault - Elsinore fault zone (concealed)

Glen Ivy South fault - Elsinore fault zone (concealed)

DRAFT

Figure:

Job No.: 190063P4.2 (1962)

CGI

January, 2023

DRAFT

APPENDIX I SUBSURFACE EXPLORATION

Relatively undisturbed samples were obtained using a modified California (CAL) sampler, which is a ring-lined split tube sampler with a 3-inch outer diameter and 21/2-inch inner diameter. Standard Penetration Tests (SPT) were performed using a 2-inch outer diameter and 1%-inch inner diameter split tube sampler. The CAL and SPT samplers were driven with a 140-pound weight dropping 30 inches. The number of blows needed to drive the samplers the final 12 inches of an 18-inch drive is noted on the boring logs as "Driving Resistance (blows/ft. of drive)." SPT and CAL sampler refusal was encountered when 50 blows were applied during any one of the three 6-inch intervals, a total of 100 blows was applied, or there was no discernible sampler advancement during the application of 10 successive blows. The SPT penetration resistance was normalized to a safety hammer (cathead and rope) with a 60% energy transfer ratio in accordance with ASTM D6066. The normalized SPT penetration resistance is noted on the boring logs as "N60." When auger refusal was encountered the drill rig used a diamond HQ core bit for rock coring to advance through the rock and recover rock core for identification and testing. Disturbed bulk samples were obtained from the SPT sampler and the drill cuttings. The soils are classified in accordance with the Unified Soil Classification System. The rock encountered were classified in accordance with the Caltrans rock classification system.

Temporary groundwater monitoring wells will be installed at boring locations B-2S and B-6S to observe groundwater levels over time. The monitoring wells should be periodically monitored, and groundwater elevations recorded by a qualified individual. A diagram presenting the well construction will be presented in Appendix I.

DRAFT

		MAJOR DIVIS	SIONS			TYPICAL	NAMES		
			CLEAN GRAVELS	GW		WELL-GRADED GRAVEL SAND	S WITH OR W	ITHOUT	
) SIEVE	GRAVELS MORE THAN HALF	WITH LESS THAN 15% FINES	GP		Poorly graded grav Without Sand	ELS WITH OR	1	_
	ILS N NO. 200	COARSE FRACTION IS LARGER THAN NO. 4 SIEVE	GRAVELS WITH	GM		SILTY GRAVELS WITH O	R WITHOUT S	AND	-
	AINED SO RSER THA		15% OR MORE FINES	GC		CLAYEY GRAVELS WITH	I OR WITHOUT	Γ SAND	-
	COARSE-GRAINED SOILS HALF IS COARSER THAN NO.		CLEAN SANDS	SW		WELL-GRADED SANDS \ GRAVEL	WITH OR WITH	HOUT	
		SANDS MORE THAN HALF	WITH LESS THAN 15% FINES	SP		POORLY GRADED SAND GRAVEL	IS WITH OR W	ITHOUT	
	MORE THAN	COARSE FRACTION IS FINER THAN NO. 4 SIEVE SIZE	SANDS WITH 15%	SM		SILTY SANDS WITH OR V	WITHOUT GR/	AVEL	
			OR MORE FINES	SC		CLAYEY SANDS WITH O	R WITHOUT G	RAVEL	
	SIEVE			ML		INORGANIC SILTS OF LC PLASTICITY WITH OR W GRAVEL			
	200	SILTS AN LIQUID LIMIT (CL		INORGANIC CLAYS OF L PLASTICITY WITH OR W GRAVEL			
	RAINED SOILS FINER THAN NO.			OL		ORGANIC SILTS OR CLA MEDIUM PLASTICITY WI OR GRAVEL			
	FINE-GRA HALF IS FII			MH		INORGANIC SILTS OF HI OR WITHOUT SAND OR		Y WITH	
	E THAN	SILTS AN LIQUID LIMIT GRE		СН		INORGANIC CLAYS OF H OR WITHOUT SAND OR		TY WITH	
	MOR			ОН		ORGANIC SILTS OR CLA PLASTICITY WITH OR W GRAVEL		OR	_
		HIGHLY ORGANIC	CSOILS	PT		PEAT AND OTHER HIGH	LY ORGANIC S	SOILS	
SAMPLE SYME	<u>IOLS</u>	LABORATOR	<i>I</i> ITS	RELA	TIVE DENSIT	Y OF COHESIONLESS SOILS	CONSIS	STENCY OF C	OHESIVE SOILS
Bulk Sample AL Modified California Sam	pler	COR - CORROSIVITY T	ESTING	RELA	TIVE DENSITY	SPT N60 BLOWS/FOOT	CONSISTENCY	SPT N60 BLOWS/FOOT	POCKET PENETROMET MEASUREMENT (TSP
PT Standard Penetration Te		EI - EXPANSION INE GW - ENVIRONMENT RV - R-VALUE PD - PARTICLE-SIZE	DEX TAL, GROUNDWATER	LOOSE	M DENSE	0 - 4 4 - 10 10 - 30 30 - 50	VERY SOFT SOFT MEDIUM STIFF STIFF	0 - 2 2 - 4 4 - 8 8 - 15	0 - 0.25 0.25 - 0.50 0.50 - 1.0 1.0 - 2.0
		UC - UNCONFINED C			DENSE	OVER 50	VERY STIFF HARD	15 - 30 OVER 30	2.0 - 4.0 OVER 4.0
			TER SYMBOLS	(1-3/8 IN (ASTM-1	CH I.D.) SPLIT-E 586 STANDARE	T40 LB HAMMER FALLING 30 INCH SARREL SAMPLER THE LAST 12 INC) PENETRATION TEST). VAL (1st 6 INCH INTERVAL) IS NOT /	HES OF AN 18-INC	ich o.d. H drive	

																D	RAFT
	(DG (OF	: т	FS	T B	OR	ING		AS PROJECT NAM							B-1S
SI	TE		<u> </u>	•					_ M	ead Valley Sewe	r Improveme	nts	STAR		P4.2 (1962-1) END	SH	EET NO.
		side Co NG CON			A					DRILL METHOD			9/21	/22	9/21/22		1
		Explora								Hollow Stem				HK			
DI	RIĹLI	NG EQU								NG DIA. (in.) TOT	AL DEPTH (ft)				GROUND WAT	• •	
	CME	-75 ING ME	THO	D			N	OTES	8	40.	.5	1670			F DRILLING 22 DRILLING	<u>.00 ft / E</u>	lev 1648.00 ft
م	140-l	b Ham	mer,	30-	in Dro	р		Hamn	ner Effic	ency = 80.0% N _e	₀~1.33N _{SPT}						1
	(ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG			PTION AND (LAB TESTS
	1665	- - - 5 -		CAL	50/5		3.6	109.5		SAND with S coarse grain <u>VAL VERDE</u> grayish brow	BILT (SP-SM ed. TONALITE (n, intensely	NEL DEPOSIT), loose to me (SP-SM), very	dium JS RC decon	dense, browr DCK (QUART	n, moist, fine to Z DIORITE), soft; (Poorly		DS WA
	1660	- 10 -		CAL	50/6												
	1655	- 15 - -		CAL	50/6												
	1650	- 20 		CAL	50/6					Wet, fine to o Dark brown; moist, fine to	(POORLY G medium gra	RADED SAN ained).	D with	CLAY (SP-S	SC), very dens	 9,	-
	A	.TL/	15				1	<u> </u>	r.⊶ r.∕.∕.		OF THIS E SUBSURF LOCATION WITH THE PRESENT	MARY APPLIES ORING AND AT ACE CONDITIO IS AND MAY CH PASSAGE OF ED IS A SIMPLI NS ENCOUNTE	THE 1 NS MA IANGE TIME. FICATI	TIME OF DRILL Y DIFFER AT (AT THIS LOC) THE DATA	ING. DTHER ATION		Figure I-1

SEWER																П	RAFT
VATER				· T		гр			ATL	AS PROJEC	TNAME			ATLAS PF	ROJECT NUM		
LEY V		DG (' I	ES		UR	ING	M	lead Valley	Sewer Improve	ments	STAR		P4.2 (1962- END		B-1S
D VAI	River	side Co			A									1/22	9/21/22		2
& MEA		NG CON Explora								DRILL ME	ETHOD Stem Auger			LOGGED BY		REVIEW	ED BY
OPE 8									BOR		TOTAL DEPTH	(ft) GROUND EL	.EV. (ft)	DEPTH/ELEV			
H QQ		-75 ING ME	тноі				N	IOTES	8		40.5	1670			-		Elev 1648.00 ft
D 09		b Hami			in Dro	р			ner Effic	iency = 80.0	0% N₀₀~1.33N₅	ΡT		¥ AT END OF ¥ AFTER DR	-		
VICES\190063P4.2 - EMW	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N_{60}	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG			RIPTION AND					LAB TESTS
- 1/3/23 10:29 - \\\\\SD SCST. COMIDFS_ROOTDATA\CLIENTS\EASTERN MUNICIPAL WATER DISTRICT/190063P4 - EMMD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190063P4 2 - EMMD, GOOD HOPE & MEAD VALLEY WATER SEWER (- - 	-		SPT SPT						moist, f (Micace Hard dr Grayish	,	grained). <i>(cont</i>	inued)	ז CLAY (SP-	SC), very de	inse,	
DATA/CLIENTS/EASTERN MUNICIPAL WATER UIS IF	- - - 	- - - 40 - -		<u>SPT</u>	50/2							DRING TERMIN Groundwater ol					
- 1/3/23 10:29 - \\SD.SCST.COM\DFS_KUUI\	- 1625 - - -	- 45 - -															
ATLAS LOG REPORT -	4	TEA	5								OF TH SUBSU LOCAT WITH PRESE	UMMARY APPLIE S BORING AND J IRFACE CONDIT IONS AND MAY THE PASSAGE O INTED IS A SIMP TIONS ENCOUN	at the Ions Ma Change F time. Lificat	TIME OF DRILL AY DIFFER AT E AT THIS LOC THE DATA	.ING. DTHER ATION		Figure I-2

R SEWER																D	RAFT
WATEF	10	DG (. т	FS	TR				AS PROJECT					ROJECT NUM	BER	B-3S
, LLEY				-					Me	ad Valley S	Sewer Improveme	ents	STAR		P4.2 (1962- END		EET NO.
A V V		side C			A								9/29		9/29/22		3
& ME/		NG CON Explora								DRILL ME	Stem Auger			LOGGED BY		REVIEWE	DBY
IOPE									BORIN		TOTAL DEPTH (ft)		V. (ft)	DEPTH/ELEV			
	CME SAMPL	-75 ING ME	THO	D			N	IOTES	8		40.5	1638		\mathbf{Y} AT TIME O \mathbf{Y} AT END OF			Elev 1612.00 ft
D D D		b Ham			in Droj	р			ner Efficie	ency = 80.0	0% N ₆₀ ∼1.33N _{SPT}				-		
RVICES\190063P4.2 - EMV	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG			IPTION AND C					LAB TESTS
	- 1635 -	- - - 5		CAL	24					VERY C medium	DLD AXIAL-CHAN	INEL DEPOSIT	<u>ΓS (Q</u> ∖ îne gr	<u>roa)</u> : CLAYE ained sand.	ey sand (s	;C),	EI RV WA
- 13/23 10:29 - (ND) SCS1. COMDFS_ROOTDATAICLENTS(EASTERN MUNICIPAL WATER DISTRICT/190063P4 - EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190063P4.2 - EMWD, GOOD HOPE & MEAD VALLEY WATER SEWER	1630 	- —10 -		CAL	50/6		5.7	115.2		brownis	RDE TONALITE sh gray, intensely ery dense, moist,	weathered to	decon	posed, very	Z DIORITE soft; (SILT)), Y SAND	-
001/DATA/CLIENTS/EASTERN MUNIC		- 15 		CAL	50/6					(Decrea	ase in fine conten	t).					
- 1/3/23 10:29 - \\SD.SCSI.COM\DFS_RC		- 20 - -		CAL	50/6					Greenis	sh gray, (fine to m	iedium grainec	i).				
ATLAS LOG REPORT -	4	╅	15				1				OF THIS I SUBSURF LOCATIO WITH THI PRESENT	IMARY APPLIES BORING AND AT FACE CONDITIO NS AND MAY CH PASSAGE OF "ED IS A SIMPLIF DNS ENCOUNTE	THE T NS MA IANGE TIME. TIME.	TIME OF DRILL Y DIFFER AT (AT THIS LOC THE DATA	.ING. DTHER ATION		Figure I-3

SITE SITE DRILLIN Baja I DRILLIN DRILLIN CME- SAMPLI	side C NG COI Explor NG EQI -75	County MPANY ation JIPMEI	, CA 7 NT		1	NOTES	Mea	DRILL ME	Sewer Improveme THOD Stem Auger		START 9/29/	190063	OJECT NUMBE P4.2 (1962-1) END	DRA R B SHEET N	-3S
	side C NG COI Explor NG EQU -75 ING ME b Ham	County MPANY ation JIPMEI	, CA (NT 30-in	Drop	1	NOTES	BORING	DRILL ME	THOD Stem Auger				END		
	NG CON Explor NG EQU -75 ING ME b Ham	MPANY ation JIPMEI ETHOD	NT 30-in					Hollow	Stem Auger		9/29/				
	Explor NG EQU -75 ING ME b Ham	TATION JIPMEI ETHOD	NT 30-in					Hollow	Stem Auger			LOGGED BY	9/29/22	4 VIEWED BY	
	NG EQU -75 ING ME b Ham	JIPMEI ETHOD	30-in									SD	KE		
CMELING 1180063P4 - EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/130063P4.2 - EMWD, GOOD 1 1001	ING ME b Ham	imer, :	30-in				8		TOTAL DEPTH (ft)				GROUND WAT	. ,	C40.00 #
11-071 11-071 11-071 ELEVATION 11-071 ELEVATION 11-071 1 11-071						Hamm			40.5	1638			DRILLING _26	.00 π / Elev 10	512.00 π
IN THE PROVIDENT OF THE PERIOD	DEPTH (ft)	BULK SAMPLE	RIVE SAMPLE BLOWS	=00T			er Efficier	ncy = 80.0	0% N ₆₀ ∼1.33N _{SPT}					1	
- 0191 KICI (1190063F4 - EMWU, AS-NEEUEL ENGINEEKING NON-DESIGN SEF	_				MOISTURE (%)	DRY DENSITY (pof)	GRAPHIC LOG			PTION AND C				-	LAB TESTS
	- 30 - - -			0/5				brownis (SM), v (Increas Ground	RDE TONALITE sh gray, intensely ery dense, moist, se in fine content water observed a	weathered to d fine to coarse f t 26 feet.	ecom	posed, very	soft; (SILTÝ S	AND	
	35 40 			0/6				lincreas		NG TERMINAT					
									Gr	oundwater obse	ervea	at 26 Feet			
AIAIC															
5	-														
2	-														
	-45														
	_														
	_														
2 2	_														
1000															
- 1/3/															
	_								OF THIS I SUBSURF	IMARY APPLIES 30RING AND AT ACE CONDITION NS AND MAY CH/	THE TI IS MAN ANGE	ME OF DRILL ' DIFFER AT (ING. DTHER	Fig	gure

R SEWER																	D	RAFT
VATE	1/			. т	<u> </u>			ING	ATLAS	6 PROJEC	T NAME				ATLAS PR	ROJECT NUN		B-4S
Z LE					<u>_</u> 3		UR	ING	Mea	d Valley	Sewer Ir	mproveme	nts	STAR		P4.2 (1962 END		IEET NO.
VAL		side Co	ount	v C	Α									9/27		9/27/22	Jor	5
MEAD		NG CON								DRILL ME	ETHOD			0,21	LOGGED BY	0/2//22	REVIEWE	
Е & -		Explora							PODING		Stem A		GROUND ELE	\/ / f+ \	SD DEPTH/ELEV			
ЧOН	CME								8	5 DIA. (IN.)	41.5		1639	v. (II)			• • •	Elev 1621.00 ft
		ING ME	THO	D			N	OTES	0		41.0		1000		TAT END OF			
ND, G	140-l	b Hamı	mer,	30-i	in Dro	р		Hamme	r Efficier	ncy = 80.	0% N ₆₀ ∼	1.33N _{SPT}				LLING		
KVICES/190063P4.2 - EMV	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG						AND CLAS					LAB TESTS
G NUN-DESIGN SEF	-	-							AL VERI	DE TONA		<u>vt)</u> : IGNEC	n dense, brov DUS ROCK ((very soft; (S	QUART		, light brow	n, st, fine to	
- 1/3/23 10:29 - (ISU) SCS1. COMIDES_ KOULUDIA WALLEN DISTRICTURE WALEK DISTRICT 19006374 - EMWD, AS-NEEDED ENGNEEKING NON-DESIGN SERVICES/19006374.2 - EMWD, GOOD HODE & MEAD VALLEY WALEK SEWERC	- 1635 - -	- 5 -		CAL	42				edium g	rained).								PD
	- 1630 - -	- 10 -		CAL	47			(Ir	ocrease	in mediui	m to coa	irse graine	d sand).					
	- 	- 15 -		CAL	53			ini Sini Sini Sini Sini Sini Sini Sini	ght brow	'n.								
	1620	_						⊊ Gi	roundwa	ter obser	rved at 1	8 feet.						
20.303.001.001		—20 - -		CAL	49			()	/eakly c	emented	l, increas	e in palgio	oclase feldspa	ar).				
1/3/23 IU:29 - V	- —1615	_							ayish to ained).	yellowis	h brown;	(POORL)	Y GRADED S	AND (SP), dense,	wet, fine to	coarse	
ATLAS LOG REPORT -	4	TEA	5									OF THIS E SUBSURF LOCATION WITH THE PRESENT	MARY APPLIES ORING AND A ACE CONDITIC IS AND MAY C PASSAGE OF ED IS A SIMPLI NS ENCOUNTI	t the 1)ns ma Hange Time. 'Ficatio	TIME OF DRILL Y DIFFER AT (AT THIS LOC) THE DATA	.ING. OTHER ATION		Figure

SEWER																	г	DRAFT
ATER									ATLAS	PROJEC	TNAME				ATLAS PR	ROJECT NUI		
≤ Z		JG	ЭF	• 1	ES	I B	OR	ING	Mead	d Valley	Sewer I	mproveme	nts	0740		3P4.2 (1962		B-4S
NALI	SITE River	side Co	ount	v C	Δ									STAR 9/27		END 9/27/22	2	SHEET NO. 6
					•				I	DRILL ME	THOD			0,21	LOGGED BY		REVIEW	
Е 8,1		Explora							BORING		Stem A		GROUND ELE	V (ft)	SD DEPTH/ELEV)
ЮН O	CME								8	DIA. (III.)	41.5		1639				-	/ Elev 1621.00 ft
005		ING ME						IOTES			-		1		T AT END OF	DRILLING		
Ú MD	140-I	b Hamı	mer,		n Dro	р		Hammer	Efficiend	cy = 80.0	0% N ₆₀ ∼	1.33N _{SPT}			¥ AFTER DR	ILLING		
VICES\190063P4.2 - EN	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG						I AND CLASS					LAB TESTS
5 NON-DESIGN SER		-		SPT	36	48			ayish to <u>y</u> iined). <i>(c</i>			; (POORL`	Y GRADED S	AND	(SP), dense,	wet, fine to	o coarse	
	-1610	- 30		CAL	42			- <u>Y</u> e coa	llowish b arse grai	prown; (F ned).	POORLY	GRADEI	SAND with S	SĪLT (SP-SM), der	nse, wet, fin		
190063P4 - EMWU, AS-N	-1605							— — <u>(S</u> ī	LTY SAI	ND (SM)), very d	ense, wet,	fine to coarse	e grair	 ned).			
- 1/3/23 10:29 - NSD:SCSI. COMDFS. ROOTDATAICLENTSFASTERN MUNICIPAL WATER DISTRICT (1190063P4 - EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190063P4.2 - EMWD, GOOD HOPE & MED VALLEY WATER SEWER	-1600	35 		SPT	51	68												
N I S\EASTERN M	1000	—40 -		SPT	65	87		(In	crease ir	n fine co	,							
											В		RMINATED A ater observed					
DATA		_																
DM/DFS_ROOT	-1595	- 45																
- \\\SD.SCST.C(_																
1/3/23 10:29	-1590	_																
ATLAS LOG REPORT	-	.TLA	5									OF THIS E SUBSURF LOCATION WITH THE PRESENT	MARY APPLIES ORING AND AT ACE CONDITIO IS AND MAY CI PASSAGE OF ED IS A SIMPLI NS ENCOUNTE	f the DNS MA HANGE TIME. FICATI	TIME OF DRILL Y DIFFER AT AT THIS LOC THE DATA	LING. OTHER ATION		Figure I-6

R SEWEI																	D	RAFT
WATE	10	DG (: т	FS	T R	OR	ING		S PROJECT							ER	B-5S
∠ LLEY				-					Mea	ad Valley S	Sewer Ir	nproveme	nts	STAR		P4.2 (1962-1 END	,	EET NO.
AD V		side Co NG CON			A					DRILL ME	TUOD			9/27		9/27/22		7
∐M ⊠ ⊠		Explora								Hollow		laer			LOGGED BY SD	1	REVIEWEI	JBI
ן בי בי	RIĹLI	NG EQU									TOTAL		GROUND ELE	V. (ft)	DEPTH/ELEV	. GROUND WA	. ,	
	CME AMPL	-75 ING ME	THO	D			1	OTES	8		41.5		1634			F DRILLING DRILLING		lev 1601.00 ft
פֿ ה	140-l	b Ham	mer,	30-	in Dro	р		Hamm	ner Efficie	ncy = 80.0)% N ₆₀ ~′	1.33N _{SPT}						1
	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG				PTION AND (LAB TESTS
		-								medium	n grained	d, low plas	SM), medium sticity. NEL DEPOSI T				•	
	1630	5			10		10.0	100.0		dense, mottling	light bro	wn, moist	, fine to medi	um gra	ained, low pla	asticity, white	· / ,	
	1625	-		CAL	43		10.6	129.3		, c			nented, more <u>Kvt)</u> : IGNEOU		,			WA
		—10 - -		CAL	80/12"					light red	ddish bro EY SANI	own, inten	<u>kvi</u> , loneot sely weathere ry dense, mo	ed to d	ecomposed,	very soft;		
	1620	- 15 -		CAL	50/6					(Decrea	ase in fir	nes).						
	1615	- - 20		CAL	82/9"					(Increas	se in mo	pisture).						
•	-1610	-								Reddisl grained		; (SANDY	SILT (ML), ve	ery de	nse, moist, fi	ne to mediun		-
AILAS LUG REPURI	1	TLA	5			_	_					OF THIS E SUBSURF LOCATION WITH THE PRESENT	Mary Applies Oring and At Ace Conditio Is and May CF Passage OF Ed Is a Simpli NS Encounte	THE 1 NS MA IANGE TIME. FICATI	TIME OF DRILL Y DIFFER AT (AT THIS LOC) THE DATA	.ING. DTHER ATION		Figure I-7

SEWEF																	DRAFT
WATER	10	DG (. т							AS PROJECT					ROJECT NUMBER	
, LLEY				-	LO	ים ו		in G		Me	ad Valley S	Sewer Improve	ements	STAR		P4.2 (1962-1) END	SHEET NO.
AD VA		side Co			A									9/27		9/27/22	8
& ME/		NG COM Explora									DRILL ME	Stem Auger			LOGGED BY	REV	IEWED BY
DPE									I	BORIN			(ft) GROUND ELE	EV. (ft)	DEPTH/ELEV	. GROUND WATE	()
	CME SAMPL	-75 ING ME	THO	D				OTES		8		41.5	1634			F DRILLING <u>33.0</u> DRILLING	00 ft / Elev 1601.00 ft
ר פ ב		b Hamr			in Dro	р			ner l	Efficie	ency = 80.0	% N₀₀~1.33N₅	PT				
- 1/3/23 10:29 - NSD:SCSI. COMDFS. FOOT DATAICLENT SEASTERN MUNICIPAL WATER DISTRICT 190063P4 - EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190063P4.2 - EMWD, GOOD HOPE & MEAD VALLEY WATER SEWER	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC	POG							LAB TESTS
		_		SPT	50	67						n brown; (SAN). <i>(continued)</i>	DY SILT (ML), v	ery dei	nse, moist, fi	ne to medium	
	-1605	- - 30									(Increas	se in sand con	tent).				
/WU, AS-NEEUEU		-		SPT	45	60					grained		TY SAND (SM),	very d	ense, moist,	fine to medium	
	-1600	- - 35									Ground	water observe	d at 33 feet.		unt fine to a		
		-		CAL	34						(Foony		(Sr), meulum (lense,	wet, inte to t	oarse grameu).	
	-1595	- 40 		SPT	33	44							N CLAY with SA	ND (CI	L), hard, wet,	fine to medium	
		_	L					<u> </u>	////	///	grained	B				-	
1 AIC													Groundwater ob	served	at 33 Feet		
		-															
2	-1590	-															
		-45															
۲. ۱.		_															
האכר		_															
- RZ		_															
1/3/23 10:.	-1585	_															
ATLAS LOG REPORT -	-1	.TLA	5									OF TH SUBSU LOCAT WITH PRESE	SUMMARY APPLIE: IS BORING AND A JRFACE CONDITIC FIONS AND MAY C THE PASSAGE OF ENTED IS A SIMPL ITIONS ENCOUNT	t the 1 DNS MA HANGE TIME. IFICATI	TIME OF DRILL Y DIFFER AT (AT THIS LOC) THE DATA	.ING. OTHER ATION	Figure

R SEWER																		D	RAFT
WATE		CG	OF	: т	FS	T B	OR	ING										IBER	B-7S
ALLEY S	ITE		•	•			•••		N	Vead Vall	ey S	Sewer Improv	eme	nts	STAR		8P4.2 (1962 END		HEET NO.
		side C NG CON			A					DRILL	MET				9/22	2/22 LOGGED BY	9/22/22	REVIEW	9 ED BY
& ME		Explor										Stem Auger				HK		REVIEW	
	RIĹLI	NG EQU										TOTAL DEPTH	H (ft)		V. (ft)	DEPTH/ELEV			EL 4500.00 (
	CME-	-75 ING ME	THO	D			N	IOTES	8			40		1597		I ¥ AT TIME O I ¥ AT END OF			Elev 1560.00 ft
פֿיַ ה'	140-l	b Ham	mer,	30-	in Dro	р		Hamm	er Effi	ciency = 8	80.0	% N ₆₀ ~1.33N	SPT			¥ AFTER DR			
VICES/190063P4.2 - EMV	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG					PTION AND					LAB TESTS
	-1595	-								VER loos	<u>RY O</u> se to	DLD AXIAL-CI	HAN Ise, I	NEL DEPOSI prown, moist,	<u>TS (Q</u> fine to	<u>voa)</u> : SILTY ∂ o coarse grai	SAND (SM) ned.),	
	-1590	5 		CAL	29					Med	lium	dense, sligh	tly m	icaceous.					
	-1585									Trac	ce gr	ravel.							WA
	-1580	- 15 - -		CAL	19					Incre	ease	e in moisture.							
	-1575	- 20 - -		CAL	50/6					gray	/ish l	RDE TONALI brown, intens SAND (SP),	sely	weathered to	decon	nposed, very	soft; (Poor		
	-	/	5				<u> </u>	<u> </u>		<u>.</u>		OF TI SUBS LOCA WITH PRES	HIS B SURF, ATION I THE SENT	MARY APPLIES ORING AND A ACE CONDITIC IS AND MAY C PASSAGE OF ED IS A SIMPL	t the 1)ns ma hange time. 'Ficati	TIME OF DRILL AY DIFFER AT E AT THIS LOC THE DATA	ling. Other Ation		Figure
ATL														NS ENCOUNT					I-9

SEV																	וח	RAFT
WATER	10	DG (: т	FS	TR	OR	ING		AS PROJEC						ROJECT NUM	BER	B-7S
	SITE			-					Me	ad Valley S	Sewer I	mproveme		STAR		P4.2 (1962- END		EET NO.
AD VA	River	side Co			4						TUOD			9/22		9/22/22		10
& ME/	Baia	NG CON Explora								DRILL ME Hollow		uger			LOGGED BY HK		REVIEWE	JBY
	ORILLIN								BORIN		TOTAL		GROUND ELE		DEPTH/ELEV		• •	
	CME-	-75 ING ME	тно	D				NOTES	8		40		1597		\blacksquare AT TIME O	F DRILLING		lev 1560.00 ft
5	140-ll	b Hami			in Dro	р			ner Efficie	ency = 80.0	0% N ₆₀ ∼	1.33N _{SPT}			¥ AFTER DR			
RVICES/190063P4.2 - EMW	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG									LAB TESTS
											brown,	intensely	Kvt): IGNEOL weathered to o dense, moist,	decom	posed, very	soft; (Poorly	/	
0063P4 - EMWD, AS-NEEUEU ENG										Hard dr	illing.							
AN MUNICIPAL WATER DISTRICT/19									₽	Ground		bserved a arse mate						
ASIE		40																
	ATLAS PROJ Mead Valle Mead Valle STTE Riverside County, CA DRILL Baja Exploration DRILL Baja Exploration NOTES 140-Ib Hammer, 30-in Drop NOTES 140-Ib Hammer, 30-in Drop Hammer Efficiency = 8 NO Wing 0 Wall 140-Ib Hammer, 30-in Drop Hammer Efficiency = 8 No Image: Second and the second and											Gro	oundwater obs	erved	ai 3/ F66[
1/3/23 10:29 - //SU.SC	-1550	-																
ATLAS LOG REPORT -	A	TEA	5									OF THIS E SUBSURF LOCATION WITH THE PRESENT	MARY APPLIES ORING AND AT ACE CONDITION NS AND MAY CH : PASSAGE OF ED IS A SIMPLIF INS ENCOUNTE	THE T NS MA IANGE FIME. 1 FICATIO	TIME OF DRILL Y DIFFER AT AT THIS LOC THE DATA	ling. Other Ation		Figure I-10

R SEWER																	Г	RAFT
ATE				· –					ATLA	S PROJEC	T NAME				ATLAS P	ROJECT NUM		
× ≻⊟ <		JG	OF	· I	E2	I B	UR	ING	Меа	ad Valley	Sewer Im	proveme	nts	STAR		P4.2 (1962 END		B-8S
AL		side C	ount	v. C	A									9/22		9/22/22	3	11
		NG CON								DRILL ME				0/22	LOGGED BY	0,11,11	REVIEW	
N L &		Explora							BORING	Hollow	Stem Aug	ger EPTH (fft)	GROUND ELE	EV. (ft)	HK DEPTH/ELEV)
DHO	CME								8	,	41.5		1593		\overline{Y} AT TIME O		• •	
600		ING ME						IOTES										
ÚMV D	140-1	b Ham			in Dro	р		Hammer	r Efficiei	ncy = 80.0	0% N ₆₀ ∼1.	33N _{SPT}			¥ AFTER DR	ILLING		
VICES/190063P4.2 - EN	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG						I AND CLAS					LAB TESTS
	-1590	- - - 5						me	edium d	lense, bro	wn, moist	:, fine to	ITS (Qvoa): (coarse graine	ed.				AL WA
	-1585	- - - 		CAL	23 36			ve	ry soft;	(CLAYE)	Y SAND (S	SC), mer	dium dense,	moist,	fine to coars	e grained).	1	WA
	-1580 -1575	- 		CAL	66				 own, (S	ILTY SAN	<u>ND (SM), v</u>	very den	se, moist, fin	e to co	arse grained			
1/3/23 10:29 - \\SU.3031.00M\UF3_F	-1570	20 		CAL	50/6													
AILAS LOG REPORI -	A	.TL/	15								C S L V F	DF THIS E SUBSURF OCATION WITH THE PRESENT	MARY APPLIE ORING AND A ACE CONDITIO IS AND MAY C PASSAGE OF ED IS A SIMPL NS ENCOUNT	T THE T ONS MA HANGE TIME. IFICATI	TIME OF DRILL Y DIFFER AT AT THIS LOC THE DATA	ling. Other Ation		Figure I-11

SEWER																		DRAFT
ATER			~ -						ATLA	S PROJEC	TNAME				ATLAS PR	ROJECT NUN		
ΕV		DG (OF	-	ES	I B	OR	ING	Mea	ad Valley	Sewer In	nproveme	nts			P4.2 (1962		B-8S
VALL		side Co	ount		٨									STAR 9/22		END 9/22/22		SHEET NO. 12
AEAD		NG CON			н					DRILL ME	THOD			9/22	LOGGED BY	9122122	REVIE	NED BY
₽ 8 - 0									POPING	Hollow	Stem Au	uger		1 (54)	HK			*)
НОР		NG EQU -75	IPIVIE						8	3 DIA. (IN.)	41.5	DEPTH (π)	GROUND ELE 1593	ν. (π)	DEPTH/ELEV ♀ AT TIME O			τ)
	-	ING ME	THO	D			N	IOTES			11.0		1000		T AT END OF			
WD, (140-l	b Hamı	mer,		in Dro	p		Hamme	er Efficier	ncy = 80.0	0% N ₆₀ ~′	1.33N _{SPT}				LLING		
RVICES/190063P4.2 - EM	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG						I AND CLASS				0	LAB TESTS
RING NUN-DESIGN SER	- 	-		SPT	48	64		B	rown, (S	ILTY SAN	ND (SM),	very den	se, moist, fine	e to co	arse grained). (continue	d)	
ND, AS-NEEDEU ENGINEE		- 30 -		SPT	42	56												
ALLAS LOG REPORT 1/3/23 10:24 - NOV SCSI. COMUPS_ ROOL DATAICLEN ISIERS MUNICIPAL WATER DISTRICT 19005374 EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/19005374.2 - EMWD, GOOD HOPE & MEAD VALLEY WATER SERVER	-1560	- 		SPT	72/11"	96/11"												
	1555	-							ard drillir		re and co	oarse mat	erial)					
STERN		-40						u) I	1010038	in moistui		Jaise IIIdl	ual).					
TS/EA:		_		SPT	19	25		(N	/ledium o	lense)								
, E E N		_				ļ	<u>Leekeelle</u>	<u> </u>										
ALAIC	4550										Gro	oundwater	and Seepage	e not c	bserved			
	-1550	_																
2		-																
		-45																
2.5		_																
j n n		_																
9 - 11S	4																	
3 10:2	-1545	-																
1/3/2:		_																
<u>:</u> -																		
AS LOG REPOR	1	TLA	5									OF THIS B SUBSURF LOCATION WITH THE	MARY APPLIES ORING AND AT ACE CONDITIO IS AND MAY CH PASSAGE OF ED IS A SIMPLII	THE T NS MA HANGE TIME.	TIME OF DRILL Y DIFFER AT (AT THIS LOC) THE DATA	.ING. OTHER ATION		Figure
ATLA													NS ENCOUNTE					I-12

R SEWE																	D	RAFT
MATE	10			т	FS	TR		ING		AS PROJEC						ROJECT NUI	MBER	B-9S
SI'				-					Me	ead Valley	Sewer	Improveme	ents	STAR		P4.2 (1962 END		EET NO.
		side Co I G CON			A						TUOD			9/22		9/22/22		13
ii Dr ≊ × E		Explora								Hollow		Auger			LOGGED BY		REVIEWE	DBI
	RIĹLIN	IG EQU									ΤΟΤΑ	L DEPTH (ft)	GROUND EL	EV. (ft)	DEPTH/ELEV			Elev 1568.00 ft
SA	ME-	NG ME	THO	D			N	IOTES	8		41.5)	1593		T AT TIME O			LIEV 1508.00 IL
פ 1 ה	40-lb	Ham	mer,	30-	in Dro	р		Hamm	er Efficie	ency = 80.0	0% N ₆₀	~1.33N _{SPT}				LLING		
	(ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG				IPTION AND					LAB TESTS
	590-	- - -									o medi		INEL DEPOS brown, moist					RV WA
	585-	5 - -		CAL	40					CLAYE micace		ND (SC), br	own, dense, i	moist, i	fine to coarse	grained,		EI
	-	- 10 -		CAL	22		9.0	112.4		Mediur	n dens	e.						DS WA
	580-	- 15 -		CAL	17					Trace ç	gravel.							
	575- - - - 570-	- 20 - -		CAL	11					Loose,	increa	se in moist	ure.					
-	F	-																4
AILAS LOG REPURI	A	TL/	15				<u> </u>	<u> </u>		7		OF THIS I SUBSURF LOCATIO WITH THI PRESENT	IMARY APPLIE BORING AND A FACE CONDITIONS NS AND MAY C E PASSAGE OF ED IS A SIMPL ONS ENCOUNT	T THE ONS MA HANGE TIME.	TIME OF DRILL Y DIFFER AT (AT THIS LOC) THE DATA	ling. Other Ation		Figure I-13

SEWER																	г	DRAFT
NATEF	10	DG (. т		TR				S PROJECT						ROJECT NUN	IBER	B-9S
, LLEY				-					Mea	ad Valley S	Sewer Impro	oveme	ents	STAR		P4.2 (1962 END		SHEET NO.
AD VA		side Co NG CON			A					DRILL ME	TUOD			9/22		9/22/22		14
& ME,		Explora									Stem Auger				LOGGED BY		REVIEV	VED BY
HOPE	DRIĹLI	NG EQU									TOTAL DEP		GROUND ELE	V. (ft)	DEPTH/ELEV			
	CME SAMPL	-75 ING ME	THO	D			N	IOTES	8		41.5		1593		I ¥ AT TIME O I ¥ AT END OF		-	/ Elev 1568.00 ft
ND, G	140-l	b Hamı	mer,	<u> 30-i</u>	in Dro	р		Hamm	ner Efficie	ency = 80.0	% N ₆₀ ~1.33	N _{SPT}				LLING		
RVICES/190063P4.2 - EM	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG									LAB TESTS
EERING NON-DESIGN SER	- 	-		CAL	36					olive gra	ay, intensely	/ weat P), de	(<u>adi)</u> : IGNEOL hered to decc ense, wet, fine t 25 feet.	ompos	ed, very soft	(POORL)	(
EMWD, AS-NEEDED ENGIN		—30 		SPT	34	45												
- 13/32 10:29 - IND SCS1. COMDFS_ROOTDATAICLENTSLASTERN MUNICIPAL WATER DISTRICT/190063P4 - EMMD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190063P4 2 - EMMD, GOOD HOPE & MEAD VALLEY WATER SEWER	1560	- 35 		SPT	56	75				(Very de	ense).							
ENTS/EASTERN MUNICIPAL V	1555	- 40 		SPT	85/12"	113/12"						PODI	NG TERMINA	TED		-		
AICLIE		_											bundwater obs					
SCST.COMDFS_ROOT/DA1	1550	- 45 																
r 1/3/23 10:29 - \\SD.:	- 1545	_															1	
ATLAS LOG REPORT -	4	TLA	5								OF SUE LOC WIT PRE	THIS E BSURF CATION TH THE ESENT	MARY APPLIES SORING AND AT ACE CONDITIO NS AND MAY CH PASSAGE OF ED IS A SIMPLI	f the 1 Ins ma Hange Time. Ficati	FIME OF DRILL AY DIFFER AT (AT THIS LOC) THE DATA	.ING. DTHER ATION		Figure
ATI												NDITIC	INS ENCOUNTE	RED.				I-14

R SEWER																		DRAFT
VATE	1.0	DG (т		гр			ATLAS	PROJEC	T NAME				ATLAS PF	ROJECT NUM		B-10S
ΓΕΛ ΓΕ					ES			NG	Mea	d Valley S	Sewer I	mproveme	nts	STAR		P4.2 (1962 END	-1)	SHEET NO.
O VAL	River	side Co	ount	y, C	A									9/23		9/23/22		15
MEA	DRILLII	NG CON								DRILL ME					LOGGED BY		REVIE	WED BY
PE &	Baja DRILLII	Explora NG EQU							BORING	Hollow DIA. (in.)			GROUND ELE	V. (ft)	HK DEPTH/ELEV	. GROUND W	 VATER ((ft)
θΗ	CME	-75							8	()	41.5	()	1587	()				ft / Elev 1560.00 ft
000	SAMPL	ING ME						OTES	F (C)		D0/ NI	4 0001			T AT END OF			
MWD,	140-1	b Hamı			in Dro	ρ		Hammer	Enicien	cy = 80.0	J% N ₆₀ ∼	1.33N _{SPT}				ILLING		
RVICES/190063P4.2 - E	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG		1. (Of) (IPTION AND					wplasticity
GINEERING NON-DESIGN SE	-1585	-						tra	LL (UI).	əl.	UD (SI	w), mediur	n dense, brow	vn, me	jist, ine to m	leolum gran	iea, io	w plasticity,
63P4 - EMWD, AS-NEEDED EN	-1580	5 		CAL	27			we	AL VERD eathered edium gr	to decon	LITE (K nposed	<u>vt</u>): IGNEC , very soft;	DUS ROCK (C (POORLY GF	QUAR RADE	TZ DIORITE) D SAND (SF), olive gray ?), medium	, intens dense,	sely moist, fine to
ICIPAL WATER DISTRICT/1900	-1575	—10 - -		CAL	50/6			(V	ery dens	e, weakl	y ceme	nted).						
OT\DATA\CLIENTS\EASTERN MUN	-1570	- 15 - -		CAL	50/5			Lig	ght browi	n; (increa	ase in m	ioisture).						
1/3/23 10:29 - \\SD.SCST.COM\DFS_KU	L(SITE River DRILLI Baja CME SAMPL 140-1 140-1 -1585 -1585 -1575 -1575 -1575	- 20 - -		CAL	50/6													
ATLAS LOG REPORT -		TLA	5									OF THIS E SUBSURF LOCATION WITH THE PRESENT	MARY APPLIES ORING AND AT ACE CONDITIO IS AND MAY CH PASSAGE OF ED IS A SIMPLII NS ENCOUNTE	THE T NS MA HANGE TIME. FICATI	TIME OF DRILL Y DIFFER AT (AT THIS LOC) THE DATA	ling. Other Ation		Figure I-15

SEWER																		DRAFT
ATER						тр			ATLAS	PROJEC	T NAME				ATLAS PI	ROJECT NUM		
× ≻⊒-		DG (OF	• 1	ES	I B	OR	NG	Mead	Valley	Sewer In	nproveme	ents	0745		3P4.2 (1962	-1)	B-10S
VALI	River	side Co	ount	v C	А									STAR 9/23		END 9/23/22		SHEET NO . 16
MEAD	DRILLI	NG CON			•					ORILL ME				0,20	LOGGED BY		REVIE	WED BY
ЪП &	Baja	Explora							BORING	Hollow	Stem Au	iger DEPTH (fft)	GROUND ELE	V. (ft)	HK DEPTH/ELEV	. GROUND V		ft)
D H O	CME	-75							8		41.5		1587	(,				ft / Elev 1560.00 ft
000	SAMPL	ING ME			_			OTES							T AT END O			
, MD MD	140-l	b Hamı			in Dro	р		Hamm	er Efficienc	y = 80.0	0% N ₆₀ ~1	.33N _{SPT}			¥ AFTER DR	ILLING		
RVICES/190063P4.2 - EI	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG											
EERING NON-DESIGN SEF	-1560	-		SPT	52	69				io decon ained). <i>(</i> i coarse	nposed, <i>continued</i> material	very soft; d)).	DUS ROCK (((POORLY G					sely moist, fine to
EMWD, AS-NEEDED ENGIN	-1555	30 		SPT	50	67												
IICIPAL WATER DISTRICT/190063P4 -	L(SITE River DRILLI Baja CME SAMPL 140-1 140-1 -1560 -1555 -1555 -1550 -1545	- 35 -		SPT	51	68												
TS/EASTERN MUN		- 40 -		SPT	80/12"	107/12"			Strongly ce	emented	1).							
	-1545	_											NING TERMIN					
ATAN		_										0	Sanawater Ol	5351 VE				
л г г		-																
MDF		-45																
21.00		_																
D.SC!	-1540	_																
6 - //S	10-10																	
3 10:2		-																
1/3/2;		_																
ATLAS LOG REPORT		TEA	5									OF THIS E SUBSURF LOCATION WITH THE PRESENT	Mary Applies Soring and A Ace conditic NS and May C Passage of Ed IS A Simpli NS Encounti	t the 1 DNS MA Hange Time. Ificati	FIME OF DRILI AY DIFFER AT AT THIS LOC THE DATA	ling. Other Ation		Figure I-16

R SEWER																D	RAFT
WATE	10			: т	FS			ING	ATLAS P	ROJECT					ROJECT NUN	IBER	B-11S
				-		ים ו			Mead	Valley S	Sewer Improven	nents	STAR		P4.2 (1962 END		HEET NO.
	River	side C			A								9/23	3/22	9/23/22		17
MEA I										RILL ME				LOGGED BY		REVIEW	ED BY
אר מיד	Baja DRILLII	Explora									Stem Auger TOTAL DEPTH (1	t) GROUND ELE	EV. (ft)	HK Depth/elev	. GROUND W	/ATER (ft)	
й Д	CME	-75							8		41.5	1587		⊈ AT TIME O			
5.5		I NG ME b Ham			in Droi	n		IOTES	Efficiono	/ <u>- 80 0</u>	% N₀₀~1.33N₅₽¹			▼ AT END OF ▼ AFTER DR	-		
- MM	140-1					р 			Linciche	/ - 00.0	1014 ₆₀ 1.0014 _{SP}	·			ILLING		
	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG				DESCRIPTIC	ON AND CLAS			ł		LAB TESTS
COF														COR			
3P4 - EMVVU, Ao-INEEUEU EIN	-1580	5 -		CAL	37			inte	L VERDE ensely we edium grai	athered	<u>JTE (Kvt)</u> : IGNE I to decomposed	OUS ROCK ((I, very soft; (S	QUAR ILTY S	TZ DIORITE) SAND (SM), o), brown, dense, mois	st, fine to	PD
	-1575			CAL	30			(W	eakly cen	nented).							
	-1570	- 15 -		CAL	74			(Ve	ery dense	, increas	se in moisture).						
	-1565	- 20 - -		CAL	50/4			(Ind	crease in	coarse	material).						
AILAS LUG KEPUKI		\ 	15				<u>P-1</u> 1	<u>^ </u>			OF THIS SUBSUF LOCATI WITH TH PRESEN	MMARY APPLIES BORING AND A FACE CONDITIO DNS AND MAY C IE PASSAGE OF ITED IS A SIMPL IONS ENCOUNT	t the 1 DNS MA Hange Time. Ificati	FIME OF DRILL AY DIFFER AT AT THIS LOC THE DATA	ling. Other Ation		Figure I-17

SEWER																	П	RAFT
ATER						<u>т р</u>			ATLA	S PROJEC	T NAME				ATLAS PF	ROJECT NUM		
× ≻⊒		JG		• 1	ES	I B	UR	ING	Mea	ad Valley	Sewer	Improveme	nts	0740		P4.2 (1962		B-11S
VALI	River	side Co	ount	v C	А									STAR 9/23		END 9/23/22	5	HEET NO. 18
MEAD	DRILLI									DRILL ME				0/20	LOGGED BY	0,20,22	REVIEW	
PE &	Baja DRILLII	Explora							BORIN	Hollow			GROUND ELE	V. (ft)	HK DEPTH/ELEV	. GROUND V	VATER (ft)	
ОНО	CME	-75							8	- ()	41.5		1587	(7	⊈ AT TIME O			
000	SAMPL	I NG ME b Hami			in Dro	n			r Efficio	nov - 90 (0% N -	.1 22N						
DWM	140-1	и папп				р 				ncy – 60.0	070 IN ₆₀ ~	~1.33N _{SPT}			AFTER DR	ILLING		
RVICES/190063P4.2 - E	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG						I AND CLASS					LAB TESTS
DED ENGINEERING NON-DESIGN SEK	- 1560 - -	- - - 30		SPT	81	108		in	tensely		d to dec	composed,	OUS ROCK (C very soft; (SI				st, fine to	
ICT/190063P4 - EMWU, AS-NEE	- 1555 - -	- - - 35				111/12"												
I SIEASTERN MUNICIPAL WATER DISTR	- 	- - - 40		SPT		67/6												
CLIEN		_					[···					RMINATED A					
- 1/3/23 10:29 - \\SD.SCST.COM\DFS_ROOT\DATAK	L(SITE River DRILLII Baja DRILLII CME SAMPL 140-1 140-1 140-1 -1560 -1555 - -1555 - - -1555 - - - - - - - - - - - - -	- 45 - -									G	unuwalef	and Seepage	= 110L O	USEI VEU			
ATLAS LOG REPORT -	-	∖₸Ŀ⋀	5	1								OF THIS E SUBSURF LOCATION WITH THE PRESENT	MARY APPLIES ORING AND AT ACE CONDITIO IS AND MAY CH PASSAGE OF ED IS A SIMPLI INS ENCOUNTE	f the t ns ma hange time. 1 ficatio	TIME OF DRILL Y DIFFER AT (AT THIS LOC) THE DATA	ling. Other Ation		Figure I-18

R SEWER																	Г	RAFT
VATEF	1.0			т					ATLA	S PROJEC					ATLAS PR	ROJECT NUM		B-12S
, ∠					ES			ING	Mea	ad Valley	Sewer	Improveme	ents	STAR		P4.2 (1962		D-123
d val	River	side C			A									9/23		9/23/22		19
(MEA	DRILLI									DRILL ME		A			LOGGED BY		REVIEW	/ED BY
OPE &	Baja DRILLII	Explora							BORING	Hollow G DIA. (in.)			GROUND ELE	V. (ft)	HK Depth/elev	. GROUND W	VATER (ft)
DH Q	CME	-75							8		41.5	5	1582		I			/ Elev 1543.00 ft
g g		I NG ME b Ham			in Droi	^		IOTES Hammer	Efficie	nov - 80 i	0% N	~1.33N _{SPT}			¥ AT END OF ¥ AFTER DR	-		
DWM:	1-0-1					<u> </u>			Lincici	ncy - 00.	0701460	1.00Nspt				ILLING		
RVICES/190063P4.2 - E	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG						N AND CLASS					LAB TESTS
INGINEERING NON-DESIGN SER	- 1580 -	-								SILTY S, rel, aspha			n dense, brov	wn, mo	oist, fine to m	iedium grair	ned,	PD RV
0063P4 - EMWD, AS-NEEDED E	- 1575 -	5 - -	<u>, x x</u>	CAL	23					VASH DE l ained, slig			BILTY SAND,	mediu	um dense, m	oist, fine to		
JNICIPAL WATER DISTRICT/19	- 	—10 - -		CAL	21													
OT/DATA/CLIENTS/EASTERN ML	- - 1565 -	- 		CAL	40			inte	ensely v	DE TONA weathere to mediu	d to de	composed,	DUS ROCK (0 very soft; (P	QUAR	TZ DIORITE) Y GRADED), light brow SAND (SP)	n, I, dense,	
1/3/23 10:29 - \\SD.SCST.COM\DFS_RU	L(SITE River DRILLI Baja DRILLI CME SAMPL 140-1 NOLEVAI - - - - - - - - - - - - -	- 20 - -		CAL	69/12"			에 가장 수 있는 것 같이 것 같이 없다. 않는 것 같 않는 것 않는 않는 것 않는 않는 않는 것 않는 않는 않는 것 같 않는										
ATLAS LOG REPORT 1		\ TL/	15									OF THIS E SUBSURF LOCATION WITH THE PRESENT	MARY APPLIES ORING AND AT ACE CONDITIC NS AND MAY CI PASSAGE OF ED IS A SIMPLI INS ENCOUNTE	t the 1)ns ma hange time. 'Ficati	FIME OF DRILL AY DIFFER AT AT THIS LOC THE DATA	LING. OTHER ATION		Figure I-19

SEWE																	г	ORAFT
ATER			~ -						ATLAS	PROJEC	TNAME				ATLAS PR			
× ≻⊒-		DG (OF	- 1	ES	IВ	ORI	NG	Mead	Valley	Sewer Impi	roveme	nts	0740		P4.2 (1962		B-12S
VALI	SITE River	side Co	ount	v C	А									STAR 9/23		END 9/23/22		SHEET NO. 20
MEAD										ORILL ME				0,20	LOGGED BY	0/20/22	REVIEV	
Е & I		Explora									Stem Auge		GROUND ELE	V (ft)	HK DEPTH/ELEV			4
DH O	CME								8	DIA. (III.)	41.5	(it)	1582	•. (II)				/ Elev 1543.00 ft
GOO		ING ME						OTES			•				T AT END OF			
ÚM Ú	140-l	b Hamı	mer,		in Dro	р		Hamme	er Efficienc	y = 80.0	0% N ₆₀ ~1.3	3N _{SPT}			¥ AFTER DR	ILLING		
VICES/190063P4.2 - EN	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG						AND CLASS					LAB TESTS
I SER				CAL	50/6			. <u>V</u>	AL VERDE	E TONAL	LITE (Kvt): to decom	IGNEC	US ROCK (C very soft; (P	QUAR [®] OORI	TZ DIORITE) Y GRADED), light brow SAND (SP	/n,) dense	
NEERING NON-DESIGN	- 1555 -	-						m	noist, fine t	o mediu	im grained)). (conti	nued)	OORL			, dense,	
MWD, AS-NEEDED ENGI	- - —1550	—30 - -		SPT	51	68		(1	ncrease in	i coarse	material).							
ATLAS LOG REPORT 1/3/23 10:29 - NSD SCST.COMDFS_ROOTDDATACLENTS/EASTERN MUNICIPAL WATER DISTRICT/190053P4 EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190053P42 - EMWD, GOOD HOPE & MEAD VALLEY WATER SEWER	- - - -1545	- 35 -		SPT	66	88		Ρ	otassium f	feldspar	, weakly ce	ementeo	l, (increased	coarse	e material).			
TS/EASTERN MUNICIP	-	- 40 -		SPT	76/12"	101/12"		⊊ G	iroundwate	er obser	ved at 39 fe	eet.						
CLIEN	-1540	_									-		RMINATED A					
ATA/		_									0	2						
OTIC																		
S RC		-																
		-45																
SI.CC	-	_																
D.SC		_																
3// - 6																		
3 10:2	-	_																
1/3/2.	-	-																
ATLAS LOG REPORT	-	TLA	5								OF SU LC WI PF	F THIS B JBSURF DCATION ITH THE RESENT	MARY APPLIES ORING AND AT ACE CONDITIO S AND MAY CI PASSAGE OF ED IS A SIMPLI NS ENCOUNTE	f the 1 Ins ma Hange Time. Ficati	TIME OF DRILL Y DIFFER AT AT THIS LOC THE DATA	ling. Other Ation		Figure I-20

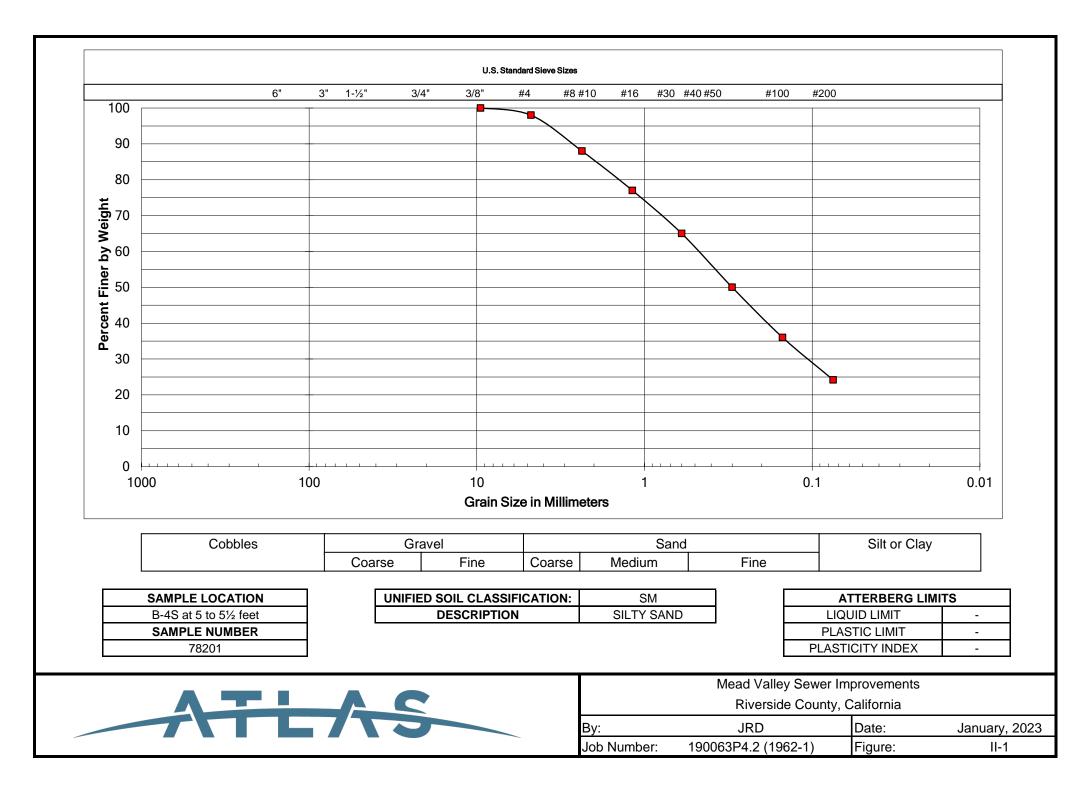
																	DRAFT
	OG	OF	: T	ES	ΓB	OR	ING		S PROJECT							IBER	B-13S
SITE								Mea	ad valley a	Sewer Improv	/eme		STAR		P4.2 (1962 END	-1)	SHEET NO.
Riv	erside (A						-			9/28		9/28/22	05145	21
∐ DRIL ≥ ≬ Rai	LING CO a Explo								DRILL ME	Stem Auger				LOGGED BY		REVIE	WED BY
								BORIN			H (ft)	GROUND ELE		DEPTH/ELEV			ft)
	R-55 P LING M	тно	n				IOTES	8		40.5		1577		\overline{Y} AT TIME O			
140)-lb Han			in Dro	р			ner Efficie	ncy = 80.0	0% N₀₀~1.33N				▼ AT END OF ▼ AFTER DR	-		
	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG	FILL (O	n - sii tv sa		ESCRIPTION				Coarse	arained
									<u>FILL (Q</u>	<u>n</u> : Silty Sa	ND (SM), medium	dens	e, brown, mo	dist, fine to d	coarse	grained.
			CAL	12		8.7	119.9		<u>YOUNG</u> moist, fi	B WASH DEP ine to mediur	OSIT m gra	S (Qywa) : CL ined.	AYEY	Y SAND (SC), medium c	lense,	pale brown,
- - - - - - - - - - - - - - - - - - -			CAL	79/9"					(Very de	ense).							
	- 15 		CAL	50/6					(Decrea	ase in fine col	ntent).					
	20		CAL	50/6					intensel	RDE TONAL ly weathered coarse graine	to de	<u>Kvt</u>): IGNEOL composed, ve	IS RC ery so	ock (quart ft; (clayey	Z DIORITE SAND (SC	i), light), very	brown, dense, moist,
	_								Yellowis	sh brown to d	lark b	prown.				T	
AILAS LUG REPORT	ATL,	15								OF T SUBS LOC/ WITH PRES	HIS B SURF/ ATION 1 THE SENTI	MARY APPLIES ORING AND AT ACE CONDITIOI IS AND MAY CH PASSAGE OF ED IS A SIMPLIF	THE T NS MA IANGE FIME. 7 FICATIO	TIME OF DRILL Y DIFFER AT (AT THIS LOC THE DATA	.ING. DTHER ATION		Figure I-21
č										CON	טווע	NS ENCOUNTE	RED.				1-21

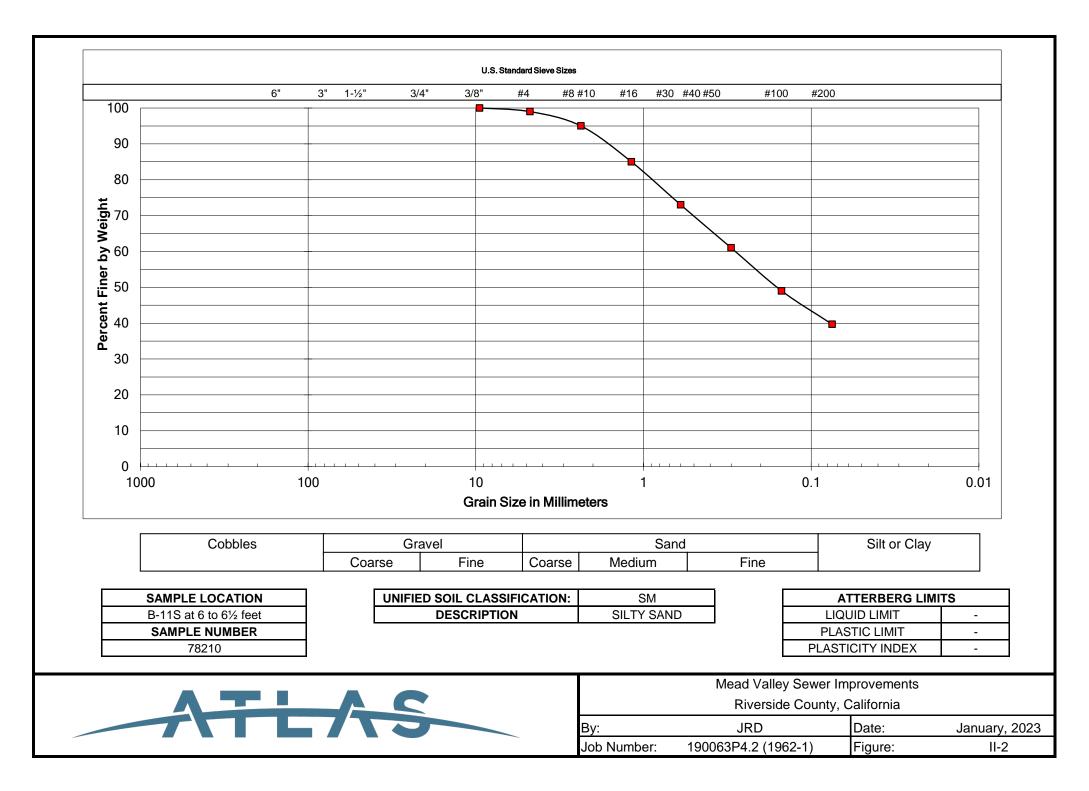
R SEWER																		DRAFT
WATEF		DG (: т		TR				AS PROJECT						ROJECT NUN	IBER	B-13S
, LLEY ,				-	LO	ים ו		ING	Me	ad Valley S	Sewer Impr	roveme	nts	STAR		P4.2 (1962 END	-1)	SHEET NO.
AD VA		side C NG CON			A					DRILL ME				9/28		9/28/22		22
& ME/		Explora									Stem Auge	er			LOGGED BY SD		REVIE	WED BY
	DRILLI	NG EQU									TOTAL DEF		GROUND ELE	V. (ft)	DEPTH/ELEV			(ft)
	LAR-	55 ING ME	тно	D			1	NOTES	8		40.5		1577		I AT TIME O I AT END OF			
ND, G	140-l	b Ham	mer,	30-	in Dro	р		Hamn	ner Efficie	ency = 80.0	0% N ₆₀ ∼1.33	3N _{SPT}			¥ AFTER DR	LLING		
RVICES/190063P4.2 - EM	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG									brown
GINEERING NON-DESIGN SEF	-1550	-		SPT	50/6	67/6				intense	RDE TONA ly weathere coarse grain	ed to de		JS RC	JCK (QUART	Z DIORITE SAND (SC), light), very	brown, dense, moist,
	-1545	30 		CAL	50/6													
	-1540	35 		SPT/	50/2													
		-40		SPT/	50/2					_				RMIN	ATED AT 40	FEET		
	-1535 -1530	- 45 -											Groundwater					
- 1/3/2		-																
ATLAS LOG REPORT -	-		5								OF SU LO WI PR	F THIS B JBSURF/ DCATION ITH THE RESENTI	MARY APPLIES ORING AND AT ACE CONDITIO IS AND MAY CH PASSAGE OF ED IS A SIMPLI NS ENCOUNTE	THE T NS MA HANGE TIME. FICATI	FIME OF DRILL AY DIFFER AT AT THIS LOC THE DATA	ling. Other Ation		Figure I-22

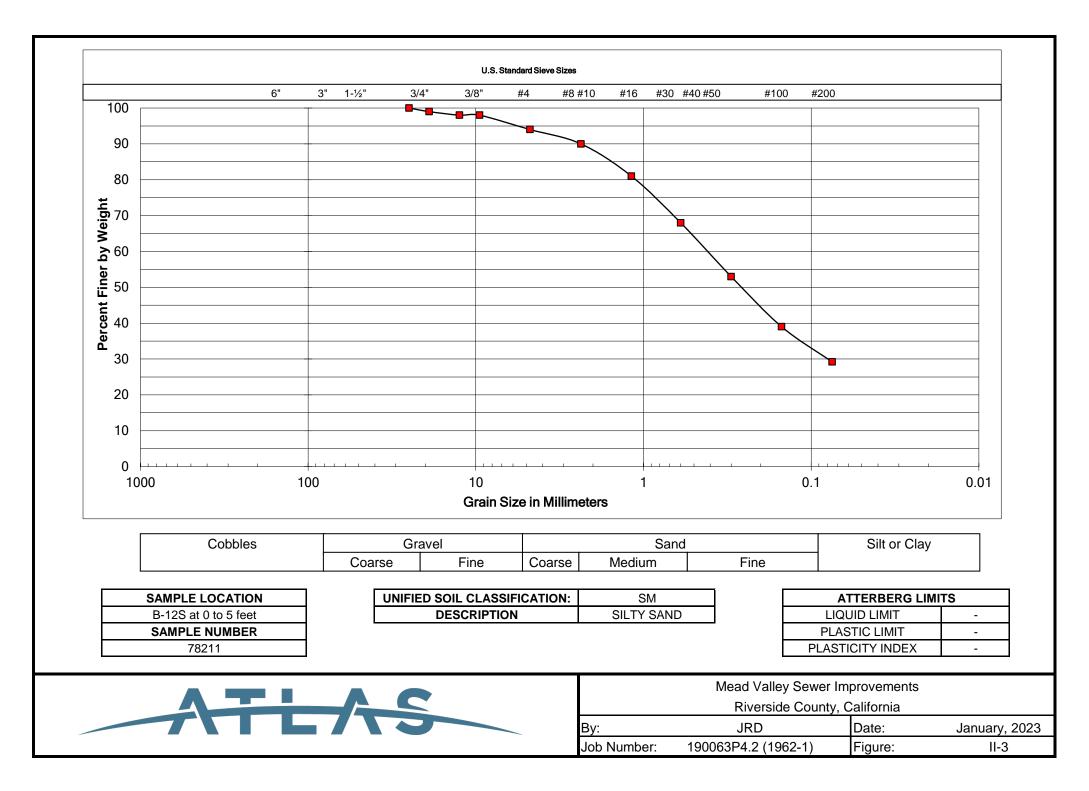
R SEWER																		DRAFT
VATEF	1.0			· –					ATLA	S PROJEC	T NAME				ATLAS PR	ROJECT NUM		
LEY V				· I	E9			NG	Mea	ad Valley	Sewer	Improveme	nts	STAR		P4.2 (1962- END	1)	B-14S SHEET NO.
d val	River	side Co			Ą									9/29		9/29/22		23
MEAI										DRILL ME					LOGGED BY		REVIE	WED BY
OPE &		Explora							BORING	Hollow G DIA. (in.)	Stem /	uger . DEPTH (ft)	GROUND ELE	V. (ft)	SD DEPTH/ELEV	. GROUND W	ATER (ft)
DH Q	CME								8		40.5		1641					ft / Elev 1612.00 ft
Ö Ö Ö		ING ME b Hami			in Droi	n		OTES Hammer	Ffficie	ncv = 80 (ראַר N	-1.33N _{SPT}			▼ AT END OF ▼ AFTER DR	_		
	140-1	o nam				<u> </u>			LINCICI	ncy – 00.0	570 14 60	1.001 Spt						
RVICES/190063P4.2 - E	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC										ined	
N-DESIGN SEF	-1640	_										·	m dense, ligh			-		
IEERING NO	-	_	\bigotimes					mo	oist, fine	e to mediu	um graii	ned.	<u>ITS (Qvoa)</u> ∶ (-			
0, AS-NEEDED ENGIN	- 	5 		CAL	50/6			int int	ensely		d to dec		OUS ROCK (C very soft; (PC					
IC1/190063P4 - EMWL		- - —10	-	CAL	50/6													
JNICIPAL WALER DISTR	1630	-																
A I A/CLIEN I S/EASTERN MI		—15 -		CAL	50/6													
- 1/3/23 10:29 - 1/3/2 30:29 - 1/3/2 30:29 - 1/3/2 30:00 Data Acclean Journa Acclean Journa Accelean Accelean Society - 1/3/23 10:29 -	- 	- 20 -		CAL	50/6													
ATLAS LOG REPORT 1/3/23 10:2	-	- 	5									OF THIS E SUBSURF LOCATION WITH THE PRESENT	MARY APPLIES ORING AND AT ACE CONDITIO IS AND MAY CH PASSAGE OF ED IS A SIMPLII NS ENCOUNTE	THE T NS MA IANGE TIME. FICATI	TIME OF DRILL Y DIFFER AT (AT THIS LOC) THE DATA	LING. OTHER ATION		Figure I-23

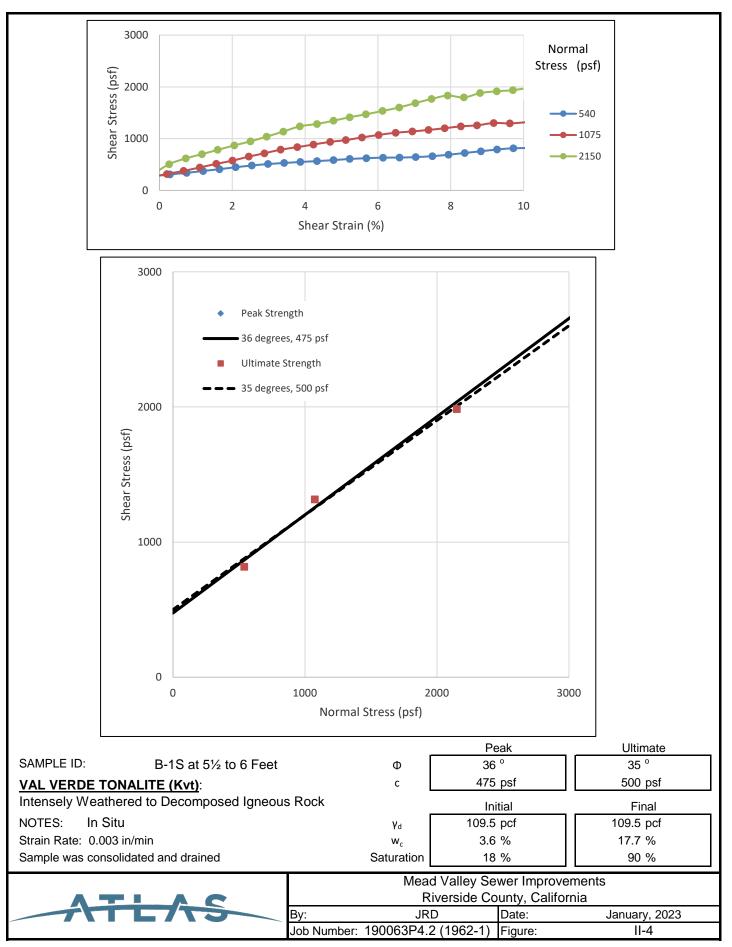
SEWER																		DRAFT
ATER			~ -						ATLA	S PROJEC	TNAME				ATLAS P	ROJECT NUM		
× ≻		DG (0F	·	ES	I B	ORI	NG	Меа	ad Valley	Sewer Ir	nproveme	nts			P4.2 (1962	-1)	B-14S
VALI	SITE River	side Co	nunt	v C	Δ									STAR 9/29		END 9/29/22		SHEET NO. 24
1EAD										DRILL ME	ETHOD			0/20	LOGGED BY	5/25/22	REVIE	WED BY
Е 8 –		Explora							BODIN				GROUND ELE	\/_(f +)	SD DEPTH/ELEV			(#)
ЪЧ Ч	CME								8	3 DIA. (III.)	40.5	DEFTH (II)	1641	v . (it)				ft / Elev 1612.00 ft
005	SAMPL	ING ME						OTES					-		T AT END OF	DRILLING		
Ő.	140-l	b Hamı	mer,		n Dro	р		Hamm	er Efficie	ncy = 80.0	0% N ₆₀ ∼	1.33N _{SPT}			V AFTER DR	ILLING		
RVICES\190063P4.2 - EN	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	GRAPHIC LOG										iah hra	
EERING NON-DESIGN SEF	-1615	-		SPT	50/3	67/3		i f	ntensely	weathere arse grain	d to deco	omposed,	DUS ROCK (C very soft; (PC		IZ DIORITE (GRADED \$), dark gray SAND (SP),	ish brov very d	wn, ense, moist,
3P4 - EMWD, AS-NEEDED ENGIN	-1610	—30 - -		SPT	50/6				Groundwa	ater obser	rved at 2	9 feet.						
10000000000000000000000000000000000000	-1605	- 		SPT	50/5													
ERN N		-40																
\EAST	1000			SPT	50/4							BOR		ATED	AT 40½ FEE	т		
	-1600	- - 45											oundwater ob					
ATLAS LOG REPORT -	-	.TLA	5									OF THIS E SUBSURF LOCATION WITH THE PRESENT	MARY APPLIES ORING AND AT ACE CONDITIO IS AND MAY CH PASSAGE OF ED IS A SIMPLI NS ENCOUNTE	THE T NS MA HANGE TIME. FICATI	TIME OF DRILL AY DIFFER AT AT THIS LOC THE DATA	ling. Other Ation		Figure I-24

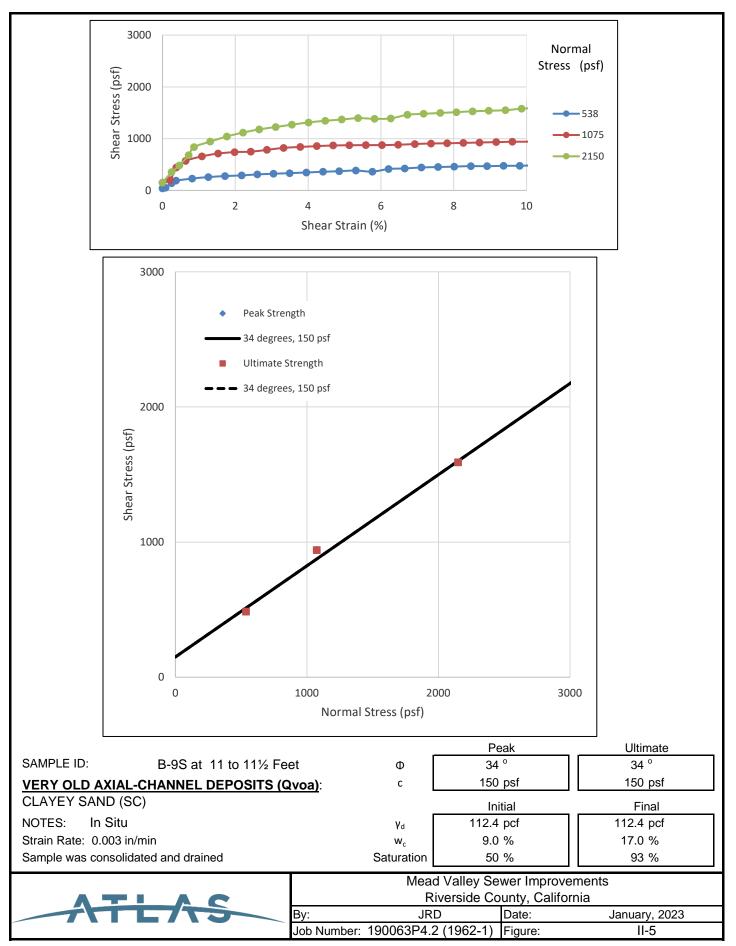
R SEWER																D	RAFT
VATEF	1.0	DG (. т		тр			ATLA	AS PROJECT	T NAME			ATLAS PR	ROJECT NUN		B-15S
LLEY/					LO	ID		ine	Me	ad Valley S	Sewer Improvem	ents	STAR		P4.2 (1962		HEET NO.
AD VA	River	side C			A								9/29		9/29/22		25
& ME/		NG CON Explora								DRILL ME	Stem Auger			LOGGED BY SD		REVIEW	ED BY
HOPE	DRIĹLI	NG EQU									TOTAL DEPTH (ft		V. (ft)	DEPTH/ELEV			
	CME SAMPL	-75 ING ME	THO	D			1	OTES	8		40.5	1641		I¥ AT TIME O I ¥ AT END OF			Elev 1613.00 ft
ND, Q	140-l	b Ham	mer,	30-	in Dro	р		Hamr	ner Efficie	ency = 80.0	0% N ₆₀ ∼1.33N _{SPT}			¥ AFTER DR	ILLING		
RVICES/190063P4.2 - EM	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG								LAB TESTS
- 1/3/23 10:29 - (ND) SCS1. COMUPES FOOT DATA ACLIEN DATA REV DISTRICT TO 100063P4 - EMMU, AS-NEEDDED ENGINEERING NON-DESIGN SERVICES/190063P42 - EMMU, GOOD HOPE & MEAD VALLEY WATER SERVICE	1640 - - -	- - - 5		CAL	50/6					fine to r	ੴ: CLAYEY SAN nedium grained.						AL WA
ICT/190063P4 - EMWD, AS-NEEU	1635 - - -	- - - 10								brownis	RDE TONALITE h gray, intensely ED SAND (SP), v	weathered to	decon	nposèd, very	soft; (POC		
I EKN MUNICIPAL WALEK DISTR	1630 - - -	- - - 		SPT		67/6	13.8	116.4									
S_RUUI \UA I A\CLIEN I S\EASI	1625 - -			CAL	50/6												
- 1/3/23 10:29 - \\>USD- COIMINE	- 	20 		CAL	50/5												
ATLAS LOG REPORT -	-		15			1		1	10.000		OF THIS SUBSURI LOCATIO WITH TH PRESEN	IMARY APPLIES BORING AND AT FACE CONDITIO NS AND MAY CH E PASSAGE OF FED IS A SIMPLIF DNS ENCOUNTE	THE 1 NS MA IANGE TIME. FICATI	TIME OF DRILL Y DIFFER AT AT THIS LOC THE DATA	ling. Other Ation		Figure I-25


SEWER																	D	RAFT
NATEF		DG (: т		ΤR			ATLA	S PROJEC					ATLAS PF	ROJECT NUME		B-15S
-LEY			Эг	1	ES	ID		IING	Mea	ad Valley S	Sewer Imp	proveme	ents	STAR		P4.2 (1962-1		EET NO.
D VAL	River	side Co			A									9/29	/22	9/29/22		26
k MEA												~r			LOGGED BY	1	REVIEWE	DBY
OPE 8		Explora							BORIN		Stem Aug TOTAL DE		GROUND ELE	V. (ft)	SD DEPTH/ELEV	. GROUND WA	TER (ft)	
ΗOO		.75 ING ME	TUO	<u> </u>				OTES	8		40.5		1641		_			Elev 1613.00 ft
С О		b Hami			in Dro	р	ľ		ner Efficie	ncy = 80.0)% N₀₀~1.3	33N _{spt}			¥ AT END OF ¥ AFTER DR	f Drilling Illing		
RVICES/190063P4.2 - EMW	ELEVATION (ft)	DEPTH (ft)	BULK SAMPLE	DRIVE SAMPLE	BLOWS PER FOOT	N ₆₀	MOISTURE (%)	DRY DENSITY (pcf)	GRAPHIC LOG									LAB TESTS
EERING NON-DESIGN SER		-		SPT	50/6				₽	brownis GRADE (continu	h gray, int D SAND (tensely (SP), ve	Kvt): IGNEOL weathered to o rry dense, moi t 28 feet.	decom	posed, very	soft; (POOF		
4 - EMWD, AS-NEEDED ENGIN	- 1610 - -	—30 - -		SPT)	50/4					- (SILTY	SAND (SI	M), very	dense, wet, fi	ne to	medium grai	ined).		_
ATLAS LOG REPORT 1/3/23 10:29 - NSD SCST. COMDFS_ROOTDATACLENTSIEASTERN MUNICIPAL WATER DISTRICT/190063P4 EMWD, AS-NEEDED ENGINEERING NON-DESIGN SERVICES/190063P42 - EMWD, GOOD HOPE & MEAD VALLEY WATER SEWER (- 	- 35 - -		SPT	50/6													
EASTERN ML	-	40		SPT	50/4							BORI	NG TERMINA	TED A	\T 40½ FEE1	-		
ADFS_ROOT\DATA\CLIEN IS\	1600 - - -	- - - 45										-	oundwater obs					
- 1/3/23 10:29 - \\SD.SCSI.CON		-																
TLAS LOG REPORT -	-1	TLA	5								O Si L(W	OF THIS E UBSURF OCATION /ITH THE RESENT	MARY APPLIES ORING AND AT ACE CONDITIO IS AND MAY CH PASSAGE OF ED IS A SIMPLIF NS ENCOUNTE	THE T NS MA IANGE TIME. TIME.	TIME OF DRILL Y DIFFER AT AT THIS LOC THE DATA	LING. OTHER ATION		Figure I-26


APPENDIX II LABORATORY TESTING


Laboratory tests were performed to provide geotechnical parameters for engineering analyses. The following tests were conducted:


- **CLASSIFICATION:** Field classifications were verified in the laboratory by visual examination. The final soil classifications are in accordance with the Unified Soil Classification System.
- IN SITU MOISTURE AND DENSITY: The in-situ moisture content and dry unit weight were evaluated on samples collected from the borings. The test results are presented on the boring logs in Appendix I.
- **PARTICLE-SIZE DISTRIBUTION:** The particle-size distribution was evaluated on soil samples in accordance with ASTM D6913.
- **CORROSIVITY:** Corrosivity tests were performed on soil samples. The pH and minimum resistivity were evaluated in general accordance with California Test 643. The soluble sulfate content was evaluated in accordance with California Test 417. The total chloride ion content was evaluated in accordance with California Test 422.
- **PERCENT FINDER THAN #200:** This test was performed on soil samples in accordance with ASTM D1140.
- **DIRECT SHEAR:** This test was performed on soil samples in accordance with ASTM D3080. The shear stress was applied to inundated samples at a constant rate of strain of 0.003 inch per minute.
- **EXPANSION INDEX:** This test was performed on soil samples in accordance with ASTM D4289.
- **ATTERBERG LIMITS:** The Atterberg limits were evaluated on a selected soil sample in accordance with ASTM D4318.
- **R-VALUE:** This test was performed on soil samples in accordance with Caltrans Test Method 301.


Soil and rock samples not tested are stored in our laboratory for future reference and analysis, if needed. Unless notified to the contrary, all samples will be disposed of 30 days from the date of this report.

SAMPLE ID	рH	RE	SISTIVITY (Ω-CM)	CHLORIDE (%)	SULFATE (%)
B-11S at 0 to 5 feet	7.99		1250	0.005	0.014
		I	EXPANSION INDEX (ASTM D4289)		
SAMPLE ID	EXPANSION IN	DEX EXP	ANSION POTENTIAL	SOIL TY	PE (USCS)
B-3S at 0 to 5 feet	18		Very Low		SAND (SC)
B-9S at 6 to 6½ feet	38		Low	CLAYEY	SAND (SC)
	Evnonci	n Indox		Expansion Detential	
	Expansio 1-2			Expansion Potential Very Low	
	21-			Low	
	51-			Medium	
	91-1	130		High	
	Above	e 130		Very High	
SAMPLE ID	PASSING NO. 20	00 (%) P/	ASTM D1140 ASSING NO. 4 (%)		PE (USCS)
3-1S at 51/2 to 6 Feet	7.1		100		ND with SILT (SP-SM)
B-3S at 0 to 5 Feet	49.5		100		SAND (SC)
3-5S at 5 to 5½ Feet 7S at 11 to 11½ Feet	<u>45.9</u> 31.9		100 100		SAND (SC) SAND (SM)
B-8S at 0 to 5 Feet	33.8		100		SAND (SM)
8S at 11 to 11½ Feet	40.9		100		SAND (SC)
B-9S at 0 to 5 Feet	36.7		100	SILTY S	SAND (SM)
9S at 11 to 11½ Feet	32.2		100		SAND (SC)
B-15S at 0 to 5 Feet	40.3		100	CLAYEY	SAND (SC)
			ATTERBERG LIMITS (ASTM D4318)		
SAMPLE ID	LIQUID LIMIT	PLASTIC LIMIT	PLASTIC INDEX		PE (USCS)
B-3S at 0 to 5 feet	27	17	10		SAND (SC)
B-8S at 0 to 5 feet B-15S at 0 to 5 Feet	42 33	15 15	27 18		SAND (SC) SAND (SC)
5-155 al 0 lo 5 reel	33	15	10	CLATET	SAND (SC)
			R-Value (CTM 301)		
SAMPLE ID		R-VALUE		SOIL TY	PE (USCS)
		10			SAND (SC)
B-3S at 0 to 5 feet		13			
B-3S at 0 to 5 feet B-9S at 0 to 5 feet B-12S at 0 to 5 feet		13 24 44		SILTY S	SAND (SC) SAND (SM) SAND (SM)

	Mead Valley Se	wer Improvements	3
	Riverside Co	ounty, California	
By:	JRD	Date:	January, 2023
Job Number:	190063P4.2 (1962-1)	Figure:	II-6

APPENDIX I

Groundwater Monitoring Report

GROUNDWATER MONITORING REPORT

FIRST SEMI-ANNUAL 2022 (SECOND QUARTER 2022)

MOBIL BALDWIN 21020 Cajalco Road Perris, California 92370

JULY 29, 2022

Prepared for:

Mr. Fayez Sedrak 2337 Norco Drive Norco, California 92860

Prepared by:

Ronaldo Arboleda Geologist

Hamid R. Assadi, R.C.E. Registered Civil Engineer

TABLE OF CONTENTS

SUMMARY TABLES	1
1. INTRODUCTION	2
1.1 Report Overview	2
1.2 Site Description	2
1.3 Background	2
2. SCOPE OF WORK	6
3. FIELD ACTIVITIES	6
3.1 Depth to Groundwater Measurements	6
3.2 Monitoring Well Purging and Sampling	
3.3 Field Logs	7
4. QUALITY ASSURANCE PLAN	7
4.1 Sample Handling	8
4.2 Equipment Decontamination	8
4.3 Laboratory Analysis	8
5. REPORT FINDINGS	
5.1 Groundwater Elevations/Flow Direction	8
5.2 Analytical Results of Groundwater Sampling	. 9
5.2.1 Total Petroleum Hydrocarbons – Gasoline	9
5.2.2 Aromatic Volatile Organic Compounds	.10
5.2.3 Fuel Additive Oxygenates	.10
5.3 Laboratory QA/QC	.10
6. CONCLUSIONS	.10
7. RECOMMENDATIONS	.11
8. LIMITATIONS	.11

FIGURES

- Figure 1 Site Vicinity Map
- Figure 2 Plan View of Site
- Figure 3 Groundwater Contour Map
- Figure 4 Isopleth Contours for Gasoline
- Figure 5 Isopleth Contours for Benzene
- Figure 6 Isopleth Contours for MTBE (Not used in this investigation)

APPENDICES

- Appendix A: Laboratory Reports and Chain-of-Custody Documentation
- Appendix B: Tabulated Groundwater Sample Analytical Results
- Appendix C: Contaminant Concentration vs. Time
- Appendix D: Groundwater Elevation vs. Time
- Appendix E: Hydrograph Over Concentration Chart
- Appendix F: Water Well Purge and Sample Data Sheet
- Appendix G: Waste Manifest

SUMMARY TABLES

Groundwater Monitoring Data	
Monitoring and sampling period covered	1 st SEMI-ANNUAL 2022
Frequency of groundwater sampling	Semi-annual
Groundwater sampling event date	June 30, 2022
Number of groundwater (gw) monitoring wells existing at the site	11
Number of gw monitoring wells sampled this sampling event	9
Number of gw monitoring wells not sampled this sampling event	2 (MW-5 and MW-7)
Range of depth to groundwater (feet bgs)	9.12 - 11.63
Range of groundwater elevation (feet amsl)	1,629.92 - 1,631.46
Groundwater flow direction	West-southwest
No. of wells with reportable dissolved-phase hydrocarbon concentration	3 of 9 wells sampled
Reportable TPH _G concentrations range (μ g/L)	1,390 μg/L – 77,800 μg/L
Reportable TPH _D concentrations range (µg/L)	NA
Reportable Benzene concentrations range (µg/L)	125 µg/L – 30,300 µg/L
Reportable Toluene concentrations range (µg/L)	1.1 μg/L – 33,300 μg/L
Reportable Ethylbenzene concentrations range (µg/L)	612 µg/L – 3,640 µg/L
Reportable Xylenes concentrations range (µg/L)	3.3 μg/L – 20,760 μg/L
Reportable MTBE concentrations range (µg/L)	ND
Reportable ETBE concentrations range (µg/L)	ND
Reportable DIPE concentrations range (µg/L)	ND
Reportable TAME concentrations range (µg/L)	ND
Reportable TBA concentrations range (µg/L)	ND
Wells with free product or sheen	None
Frequency of free product recovery this monitoring period	NA
Range of free product thickness this sampling event	NA
Free product/contaminated groundwater recovered to date	NA

Remedial Action Data				
None				
NA				
13,582.6 lbs				
362.2 lbs				
NA				
NA				
740 yd ³				
· · ·	NA 13,582.6 lbs 362.2 lbs NA NA			

NA = Not Applicable

1.0 INTRODUCTION

Associated Consulting Civil and Environmental Services, Inc. (A.C.C.E.S., Inc.) was retained by Mr. Fayez Sedrak to prepare this report for submittal to the Santa Ana Regional Water Quality Control Board (SARWQCB). The report summarizes groundwater monitoring activities performed at Mobil Baldwin located at 21020 Cajalco Road in Perris, California (Figure 1). The sampling event for First Semi-annual 2022 was conducted on June 30, 2022.

1.1 Report Overview

This report describes the field procedures and observations, laboratory analytical results of groundwater samples, and conclusions resulting from the June 30, 2022 sampling event.

This report is submitted in compliance with the reporting requirements of the County of Riverside Community Health Agency Department of Environmental Health contained in "Site Assessment and Cleanup Corrective Action Guidelines"

1.2 Site Description

The subject site is located at the northeast corner of Cajalco Road and Brown Avenue in Perris, California, an unincorporated area of the County of Riverside. Near the subject site, Brown Street runs north-south and Cajalco Road runs east-west. According to the United States Geological Survey (USGS) Topographic Map for Steele Peak, California Quadrangle, the site is located in Township 4 South, Range 4 West, Section 10, and the elevation is approximately 1,640 feet above mean sea level (AMSL). The site is rectangular in shape and measures approximately 190 feet long by 174 feet wide. The site has been vacant for a number of years. In 2014, a new gasoline station (76 Gas Station) was constructed just to the north of the former Mobil Baldwin. Structures currently present at the site include a canopy that covers dispenser islands and a building that houses a shop and food mart. The surrounding properties are residential/commercial. Figure 2 illustrates the plan view of the site with the location of the existing monitoring wells, former and existing USTs and dispenser islands.

1.3 Background

In the past, the site included fuel retail dispensing facilities with five (5) USTs: two (2) 10,000-gallon and three (3) 4,000-gallon petroleum tanks.

Due to changing UST regulations, the USTs at the site were removed on June 1, 2000 at the request of the County of Riverside Department of Environmental Health (CRDEH). Use of these USTs had been suspended in 1990 and the required temporary closure permits were obtained from the CRDEH until the USTs were removed. Based on the analytical results of the soil samples collected during the UST removal, an unauthorized release report dated July 19, 2000 was filed for the site and the CRDEH required further site assessment to define the horizontal and vertical extent of the released hydrocarbons.

EAR was retained in August of 2000 to provide assistance in connection with the application process with the California State Water Resources Control Board (CSWRCB), Underground Storage Tank Cleanup Fund (USTCF) and the required site assessment activities. EAR submitted a Site Assessment Plan dated November 5, 2001 to the CRDEH to address the site assessment requirements.

The CRDEH approved the work plan in a letter dated January 2, 2002. Cost pre-approval by the USTCF was granted in their February 26, 2002 letter, however, only Geoprobe soil gas and soil sampling activities were approved based on the cost estimate provided.

The Geoprobe survey, which consisted of advancing a total of 16 soil gas and 9 soil-sampling points, was conducted on March 28, 2002 to assess the extent of petroleum hydrocarbon impact at the soil site. The analytical results of these samples indicated significant concentrations of total petroleum hydrocarbons in the gasoline range (TPH_G), benzene, toluene, ethylbenzene and xylenes (BTEX) and methyl tertiary butyl ether (MTBE) in the samples collected in the southwest guadrant of the site.

In a Site Assessment Plan dated August 12, 2002, EAR proposed that seven additional borings (one up gradient, two down gradient, three cross gradient, and one in the former small USTs pit) and sampling be conducted using a conventional drill rig with hollow stem augers to a depth of approximately 40 feet below ground surface (bgs). On December 30, 2002 EAR completed four 32-foot deep borings as groundwater monitoring wells MW-1, MW-3, MW-4, and MW-5 and two 35-foot deep borings as groundwater monitoring wells MW-2 and MW-7. On December 31, 2002, one 32-foot deep boring was completed as groundwater monitoring well MW-6.

Quarterly monitoring of the wells during the first and second quarters of 2003 indicated elevated concentrations of TPH_G and BTEX in monitoring wells MW-1, MW-4 and MW-5. MTBE was also detected in those wells during the first and second quarter sampling events and in the down gradient well (MW-7) during the first quarter sampling event. Based on the concentrations observed in the first and second quarter of 2003 groundwater monitoring events and in pursuant to the directives of the CRDEH in a letter dated June 26, 2003, EAR prepared a Further Site Assessment (FSA) and Interim Remedial Action Plan (IRAP) dated August 5, 2003. In the FSA and IRAP, EAR recommended installing one additional well to the south of the release and to conduct source removal excavation. In a letter dated September 29, 2003, the CRDEH approved the proposed work. On February 25, 2004, EAR installed groundwater monitoring well MW-8 to the south of the property. Laboratory analysis of soil and water samples collected at MVV-8 indicated concentrations below laboratory detection limits. Based on the soil sampling completed on and off-site, it is evident that the impact to the subsurface soil is completely defined in all directions.

In order to meet USTCF requirements, as per discussion with Mr. James Young of the USTFC, it was decided to conduct a soil vapor extraction (SVE) feasibility study. The *Soil Vapor Extraction Feasibility Test (SVEFT) Work Plan* dated March 9, 2005 was prepared and submitted to the CRDEH for review and approval. In response, Ms. Linda Shurlow of the CRDEH issued a letter dated March 28, 2005 accepting the work plan. The three proposed vapor wells were installed on May 2, 2005, and the SVEFT was attempted on May 19, 2005.

The CRDEH issued a letter dated September 15, 2005 stating that oversight responsibilities were transferred from the CRDEH to the CRWQCB. The details of this well installation and SVERFT were submitted to the CRWQCB in a report dated November 2, 2005. The report concluded that due to shallow/semi or fully confining groundwater conditions, SVEFT could not be completed at the site. Therefore, in order to better address the site remediation, it was recommended to conduct soil excavation and the installation of an infiltration gallery as described in *Further Site Assessment and Interim Remedial Action Plan* dated August 5, 2003 and its addendum dated September 29, 2003.

In a meeting between EAR and CRWQCB on January 24, 2006, it was concluded that soil

excavation is the most suitable remedial alternative, keeping in view the limited extent of the benzene contamination plume. CRWQCB issued a letter dated January 26, 2006 which summarized the corrective action recommendations as follows:

- Conduct aquifier pump test to develop strategy for addressing groundwater to be encountered during excavation.
- Remedial excavation of soil near the tank and dispenser areas.
- Evaluate installing a reactive barrier consisting of an oxygen-release compound.
- Reinstallation of the wells destroyed during excavation
- Based on the aquifier pump test results, evaluate installation of extraction gallery through the backfill.
- Removal of product piping, dispenser and vapor recovery lines which was not removed during tank removal. Collect soil samples for laboratory analysis if petroleum hydrocarbon impact is suspected.

An aquifier pump test was conducted on April 12 and 13, 2006 by EAR. Single well tests were conducted at two-inch diameter wells VE-2 to VE-4 on April 12, 2006 and a six-hour step drawdown test was conducted at four-inch diameter well MW-1 on April 13, 2006. Based on hydraulic conductivity measured from single well tests, saturated soil to a depth of approximately 15 feet bgs has a very low permeability characteristic of a clayey silt or silty clay. Very little groundwater inflow to an excavation would be expected from this interval.

A.C.C.E.S. Inc. conducted remedial action at the site using excavation and disposal method on January 23, 28, 29, 30, February 7, March 26, 27 and 28, 2008. Before remedial actions began, MW-1 was properly destroyed on January 15, 2008. MW-1 was re-installed to its original location on September 16, 2008. During the excavation process, an underground storage tank was discovered in the excavation. The UST was discovered on January 28, 2008 and was Remedial activities were temporarily suspended after the removed on February 7, 2008. February 7, 2008 activities to complete additional permit conditions by the County of Riverside Community Health Agency. A.C.C.E.S. Inc. resumed work on March 26, 2008 with the continuation of the excavation and the removal of product piping, dispenser and vapor recovery lines that were not removed during the June 1, 2000 tank removal activities. During that remedial action, a total of twenty-nine (29) soil samples were obtained at various depths within and along the peripheries of the pre-determined excavation site (Figure 2). The results of laboratory analysis revealed that TPH_G and BTEX were reported in samples collected within and along the peripheries of the excavation area from 4 feet bgs down to the maximum depth of 14 feet bgs. At the completion of the remedial action on March 27, 2008, approximately 740 yd³ of contaminated soil was excavated and transported to a disposal facility. Dewatering was conducted during the entire excavation process. Approximately 4,200 gallons of water were collected. The collected groundwater was temporarily stored on-site and was transported to a recycling facility for treatment and disposal. Based on laboratory analytical results, PID readings and field observations, impacted soils extend beyond the lateral and vertical extents of the excavation.

MW-2 was inadvertently destroyed by one of the transporter trucks during the soil remediation process. On September 16, 2008 MW-1 was re-installed to its original location and MW-2 was re-installed to within one foot from its original location. MW-1 and MW-2 were re-installed to the maximum depth of 30 feet and screened from 5 to 30 feet below ground surface (bgs). A.C.C.E.S. Inc. started quarterly groundwater monitoring at the site in the fourth quarter of 2006. Quarterly groundwater monitoring of the wells during the fourth quarter of 2007 indicated elevated concentrations of TPH_G, BTEX and MTBE in monitoring well MW-1. TPH_G and BTEX

concentrations were also reported at MW-4 and MW-5. Following the 2008 remedial action, results of chemical analyses of groundwater samples collected during quarterly investigations indicated fluctuations in contaminant concentrations.

A.C.C.E.S. Inc. performed additional subsurface soil and groundwater investigation at the site on February 15-16, 2012. During this phase of the investigation, two (2) soil borings, AB-5 and AB-6, were drilled to the maximum depth of 25 feet below ground surface (bgs) and converted to groundwater monitoring wells as MW-9 and MW-10; four (4) soil borings, AB-1 through AB-4, were drilled to the maximum depth of 15 feet bgs; and one (1) boring was drilled to the maximum depth of 20 feet bgs and converted to a sparge well (SW-1). Additionally, a 20-foot long slotted pipe was installed horizontally during this investigation to address extraction of soil vapor during remedial action. Based on state certified laboratory analytical results during this investigation, soils to the north, northeast and east of MW-1 were impacted by petroleum hydrocarbon contaminants.

MW-9 and MW-10 were developed on February 22, 2012. Based upon state certified laboratory analytical results during this investigation, the groundwater contamination plume appears to have extended to the north and east of MW-1.

A.C.C.E.S., Inc. performed remedial action feasibility study at the site consisting of vapor extraction combined with air sparge pilot tests on December 10-14, 2012. The results of the study indicated that that method of remediation can be implemented successfully at the site.

On December 10, 2012, vapor extraction well VE-1 was tested under applied vacuum of 55 inches of water column (*in. WC*) and flow rate of 155 cubic feet per minute (cfm). The zone of vacuum influence was determined to extend to 12 feet.

Air sparge well SW-1 was initially tested under a pressure of 30 psi with a flow rate of less than 10 cfm on December 11, 2012. The pressure and flow rate became steady at 22 psi and 15 cfm, respectively, after 4 hours of operation. The 9-hour air sparging test was performed in combination with vapor extraction. Results of the test indicated maximum hydraulic mounding at 4.5 feet at MW-1 (located 10 feet from SW-1). Marginal hydraulic mounding can be observed at MW-4, MW-5, MW-9 and MW-10 which are located 21-44 feet from SW-1. Four hours after the start of injection of air, groundwater dropped sharply at observation wells located within 44 feet of SW-1. Likewise at that point in time, positive pressure was recorded at MW-1 at 0.2 in. WC. Dissolved oxygen (DO) was observed to have increased at all existing groundwater monitoring wells at the subject site.

To further evaluate the feasibility of air sparging combined with vapor extraction and in order to determine the mass removal efficiency of the air sparging process, air sparging combined with vapor extraction operations were extended for 18 hours (9 hours each day on December 12 and 14, 2012). Overall, after 37 hours of operation, 595.108 lbs of TPH_G and 13.932 lbs of VOCs were removed during the remedial action feasibility study.

Groundwater samples were collected from all existing groundwater monitoring wells before and after air sparging. Although there were changes observed in the contaminant concentrations, the test was too short to gauge the effect of biodegradation.

In addition to the existing remediation system, four (4) air sparge wells (SW-2 through SW-5) and four (4) horizontal vapor extraction lines (VE-2 through VE-5) were installed on March 18, 2014. Remedial action consisting of air sparging combined with vapor extraction at the five air

sparge wells and five horizontal vapor extraction lines was conducted by A.C.C.E.S., Inc. on March 24 to May 6, 2014. Approximately 12,983.51 lbs of TPH_G and 1,362.14 lbs of VOCs (Benzene, Toluene, Ethylbenzene and Xylenes) were removed during the 500 hours of air sparging combined with vapor extraction operations at SW-1 and VE-1 through SW-5 and VE-5 in this phase of the remedial action.

2.0 SCOPE OF WORK

The tasks completed during the sampling were authorized by Mr. Fayez Sedrak. The scope of work for this groundwater monitoring program consisted of the following major tasks:

- > Depth to groundwater measurements at nine (9) of eleven (11) monitoring wells,
- > Purging of nine monitoring wells,
- > Collection of groundwater samples at nine wells,
- > Analytical laboratory testing of groundwater samples,
- > Data analysis, &
- > Report preparation

3.0 FIELD ACTIVITIES

All groundwater monitoring and sampling activities were performed in general accordance with A.C.C.E.S., Inc. protocols and the A.C.C.E.S. Inc. Site Safety Plan (SSP). Nine (9) of eleven (11) existing groundwater monitoring wells were sampled during this monitoring period. MW-5 was covered with compacted dirt overlay and cannot be located, thus, was not gauged, purged or sampled. MW-7 was covered with concrete due to the road expansion project by Riverside County and was not located and re-commissioned during this monitoring event.

3.1 Depth to Groundwater Measurements

Depth to groundwater measurements were performed prior to purging and sampling of each groundwater monitoring well. The measurements were taken using a SolinstTM water level indicator. A surveyed mark on top of the PVC casing of each well was used as the reference point.

3.2 Monitoring Well Purging and Sampling

Prior to the collection of each groundwater sample, a minimum of three (3) saturated casing volumes of water was purged from each well to ensure that stagnant well water was replaced by formation water. The saturated casing volume (CV) was calculated as follows:

$CV = \pi r^2 d$ (7.481 gal/ft³), where:

r= the radius measured from the center of the casing to the inside surface of the casing (feet); and d= the thickness of the column of water standing in the well (feet)

Each well was purged using a 2-inch diameter, submersible pump which draws current from a 110-V AC supply outlet. Each well was pumped at a rate of approximately 0.75 to 1.5 gallons per minute. Measurements of pH, conductivity, turbidity and temperature were recorded during

purging and allowed to stabilize to within the following limits:

Parameter	Variance
pH	0.1 pH units
Conductivity	<u>+</u> 5%
Temperature	+ 5%
Turbidity	<u>+</u> 10%

If a well was purged dry prior to removal of three casing volumes of water, the water level in the well was allowed to recover to eighty percent (80%) of its static level. As soon as this level was reached in the well, measurements for pH, conductivity and temperature were repeated to determine water quality, and a groundwater sample was collected. If the time for recovery to 80% of the static level exceeded two hours, a groundwater sample was collected as soon as a sufficient volume of water was available.

Groundwater samples were collected in the order of the analytical parameters' volatility starting at the well with the lowest concentration of aromatic volatile organics. Each respective sample was collected using a new, inert, disposable bailer dedicated to each well.

Groundwater generated during well purging activities and water generated during equipment decontamination activities was contained on-site in 55-gallon drums for proper handling and disposal following receipt of chemical analyses. Each 55-gallon drum was appropriately labeled with its contents, estimated volume, date and source.

3.3 Field Logs

A field log was used to record all monitoring and sampling activities. The field log was used to record the following:

- Name of the project,
- Appearance of the samples,
- Description of sampling point and sampling methodology,
- Date and time of collection,
- Type of sample,
- Sample identification numbers,
- References such as maps or photographs of the sampling site,
- Field observations,
- Location of the sampling point, &
- Field measurements made (e.g. organic vapor, water level, etc.).

4.0 QUALITY ASSURANCE PLAN

To ensure the accuracy and reliability of the data collected, standard quality assurance/quality control (QA/QC) procedures were followed. A trained field technician monitored all field activities and was responsible for the proper collection and preservation of groundwater samples.

4.1 Sample Handling

Groundwater samples were collected from the monitoring wells using new, inert, disposable bailers dedicated to each well. Each sample was transferred from the bailer, with as little agitation as possible, into pre cleaned, properly preserved laboratory- provided Volatile Organic Analyses (VOA) containers. Three VOA bottles for each location were prepared. Sample bottles for VOA were filled completely, allowing no headspace. Filled sample containers were immediately labeled, and placed into an ice cooler with blue ice. Samples were delivered to the laboratory with a completed chain-of-custody form.

4.2 Equipment Decontamination

To minimize the potential of cross-contamination of the wells, all down-hole purging and sounding equipment were thoroughly decontaminated prior to first use and between each purging event. The well purging equipment was decontaminated by using a soapy water wash, followed by a tap water rinse, and a final de-ionized water rinse. Decontamination water was stored on site in a 55-gallon drum. Each 55-gallon drum was appropriately labeled.

4.3 Laboratory Analysis

Chemical analyses were performed by Jones Environmental, Inc. (JEI). JEI is a California Department of Health Services (CA DHS) certified analytical laboratory with approved internal quality assurance/quality control (QA/QC) procedures.

5.0 REPORT FINDINGS

5.1 Groundwater Elevations/Flow Direction

Depth to groundwater measurements were performed at nine (9) of eleven (11) existing groundwater monitoring wells on June 30, 2022. MW-5 was covered with compacted dirt overlay and MW-7 was covered with concrete overlay, thus, those wells were not measured for depth to water. Top-of-casing (TOC) elevations were re-surveyed last August 8, 2019 and the results are presented below. Based on the new TOC elevations and nine wells, the groundwater flow direction appears to be to the west-southwest, as shown in Figure 3. The current groundwater elevation data is presented in Table 5.1. Historic groundwater elevations versus time are included in Appendix D.

WELL NO.	TOTAL WELL DEPTH (ft)	SCREENED INTERVAL (ft. bgs)	ELEVATION OF TOP OF CASING (ft. amsl)	DEPTH FROM TOP OF WELL TO GROUNDWATER (ft)	THICKNESS OF FREE PRODUCT (ft)	GROUNDWATER ELEVATION (ft. amsl)
MW-1	30	5-30	1640.63	9.95	Not Observed	1630.68
MW-2	30	5-30	1642.41	11.24	Not Observed	1631.17
MW-3	32	7-32	1643.09	11.63	Not Observed	1631.46
MW-4	32	7-32	1640.99	10.32	Not Observed	1630.67
MW-5	32	7-32	1639.63	NM	Not Observed	
MW-6	32	7-32	1639.09	9.17	Not Observed	1629.92

Table 5.1:	Groundwater elevations at the monitoring wells measured on June 30, 2022
------------	--

WELL NO.	TOTAL WELL DEPTH (ft)	SCREENED INTERVAL (ft. bgs)	ELEVATION OF TOP OF CASING (ft. amsl)	DEPTH FROM TOP OF WELL TO GROUNDWATER (ft)	THICKNESS OF FREE PRODUCT (ft)	GROUNDWATER ELEVATION (ft. amsl)
MW-7	35	10-35	1637.31	NM	Not Observed	
MW-8	26	6-26	1639.89	9.12	Not Observed	1630.77
MW-9	25	5-25	1640.79	9.98	Sheen	1630.81
MW-10	25	5-25	1642.27	11.30	Not Observed	1630.97
MW-11	20	5-20	1641.17	10.42	Not Observed	1630.75

NM = Not Measured

5.2 Analytical Results of Groundwater Sampling

For ease of discussion, the analytical results are presented according to the contaminant type. Analytical results from the Second Semi-annual 2021 (Fourth Quarter 2021) sampling event at Mobil Baldwin are presented in Table 5.2. See Appendix A for complete laboratory analytical reports. For a history of groundwater analytical data, refer to Appendix B. Contaminant Concentrations versus Time are included in Appendix C.

 Table 5.2: Tabulated results of analytical tests for groundwater samples collected on June 30, 2022

	8015M		Method 8260B									
Sample ID	TPH _G μg/L	Benzene µg/L	Toluene µg/L	Ethyl- benzene µg/L	Xylenes µg/L	MTBE µg/L	ETBE µg/L	DIPE µg/L	TAME µg/L	TBA µg/L	Ethanol mg/L	Naph- thalene µg/L
MW-1	13,400	815	325	2,790	4,757	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<25	ND<25	484
MW-2	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<25	ND<25	ND<2.5
MW-3	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<25	ND<25	ND<2.5
MW-4	1,390	125	1.1	612	3.3	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<25	ND<25	20.7
MW-5	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<25	ND<25	ND<2.5
MW-6	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<25	ND<25	ND<2.5
MW-7	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<25	ND<25	ND<2.5
MW-8	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<25	ND<25	ND<2.5
MW-9	77,800	30,300	30,300	3,640	20,760	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<25	ND<25	708
MW-10	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<0,5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<25	ND<25	ND<2.5
MW-11	ND<100	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<25	ND<25	ND<2.5
RL	100	0.5	0.5	0.5	0.5	2.5	2.5	2.5	2.5	25	25	0.5

RL= Reporting Limit

ND=Not Detected (below RL) NS=Not Sampled

5.2.1 Total Petroleum Hydrocarbons as Gasoline (TPH_G)

Groundwater samples were analyzed for Total Petroleum Hydrocarbons (TPH) as gasoline (TPH_G) by LUFT GC/MS Method. TPH_G concentrations were reported in milligram per liter (mg/L). TPH_G concentrations were converted to microgram per liter (μ g/L) unit in this report for presentation and uniformity purposes.

Elevated TPH_G concentrations were detected at monitoring wells MW-1, MW-4 and MW-9 at 13,400; 1,390 and 77,800 μ g/L, respectively. Isopleths of TPH_G are shown in Figure 4.

5.2.2 Aromatic Volatile Organic Compounds

Groundwater samples from each monitoring well were analyzed for BTEX (Benzene, Toluene, Ethylbenzene, Xylenes) by EPA Method 8260B. All concentrations were reported in microgram per liter (µg/L) units.

Elevated Benzene concentrations were detected at MW-1, MW-4 and MW-9 at 815; 125 and $30,300 \mu g/L$, respectively. Isopleths of Benzene are shown in Figure 5. Of the wells sampled, Toluene, Ethybenzen and Xylenes were detected at MW-1, MW-4 and MW-9, with the highest detected at MW-9 at 30,300; 3,640 and 20,760 $\mu g/L$, respectively.

Of the wells sampled, reportable Naphthalene concentrations ranged from 20.7 - 708 µg/L

5.2.3 Fuel Additive Oxygenates

Groundwater samples from each monitoring well were also analyzed for fuel additive oxygenates (MTBE, ETBE, DIPE, TAME, and TBA) by EPA Method 8260B. Concentrations were reported in microgram per liter (μ g/L) units. MTBE, ETBE, DIPE, TAME, TBA and Ethanol concentrations were not reported in this sampling event.

5.3 Laboratory QA/QC

Laboratory blanks (i.e., method blanks) were part of QA protocols utilized by the analytical laboratory to ensure that contamination was not introduced during the sample extraction or chemical analysis procedures. The laboratory did not report any detectable concentrations of contaminants in the laboratory blanks.

The laboratory also includes, as part of each complete laboratory report, a QA/QC summary sheet. The QA/QC summary sheet presents the matrix spike (MS) and matrix spike duplicate (MSD) percent recoveries, the relative percent difference, and their acceptable ranges. All MS/MSD data presented were within acceptable QC limits for the samples collected during this guarterly groundwater monitoring event.

6.0 CONCLUSIONS

Based on the results presented in this report, A.C.C.E.S., Inc. has the following conclusions:

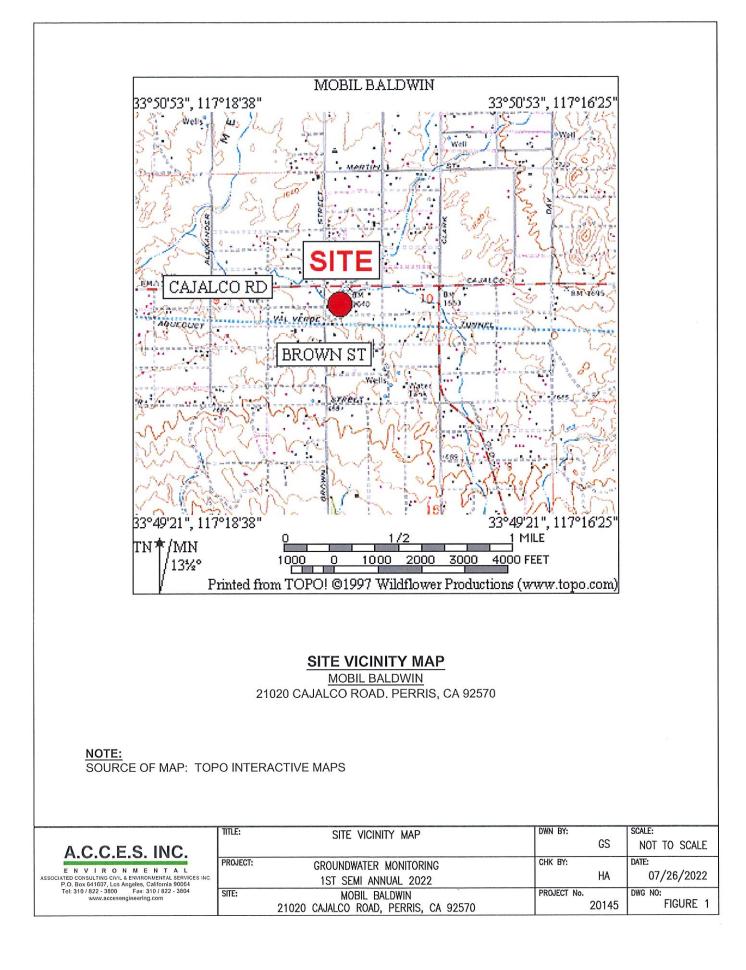
- Based on depth to groundwater measurements at nine wells, the direction of groundwater at the site was to the west-southwest during this investigation.
- Elevated TPH_G and Benzene concentrations were detected at MW-1 (13,400 and 815 μg/L), MW-4 (1,390 and 125 μg/L) and MW-9 (77,800 and 30,300 μg/L).
- Sheen was not observed at MW-9 during this monitoring event

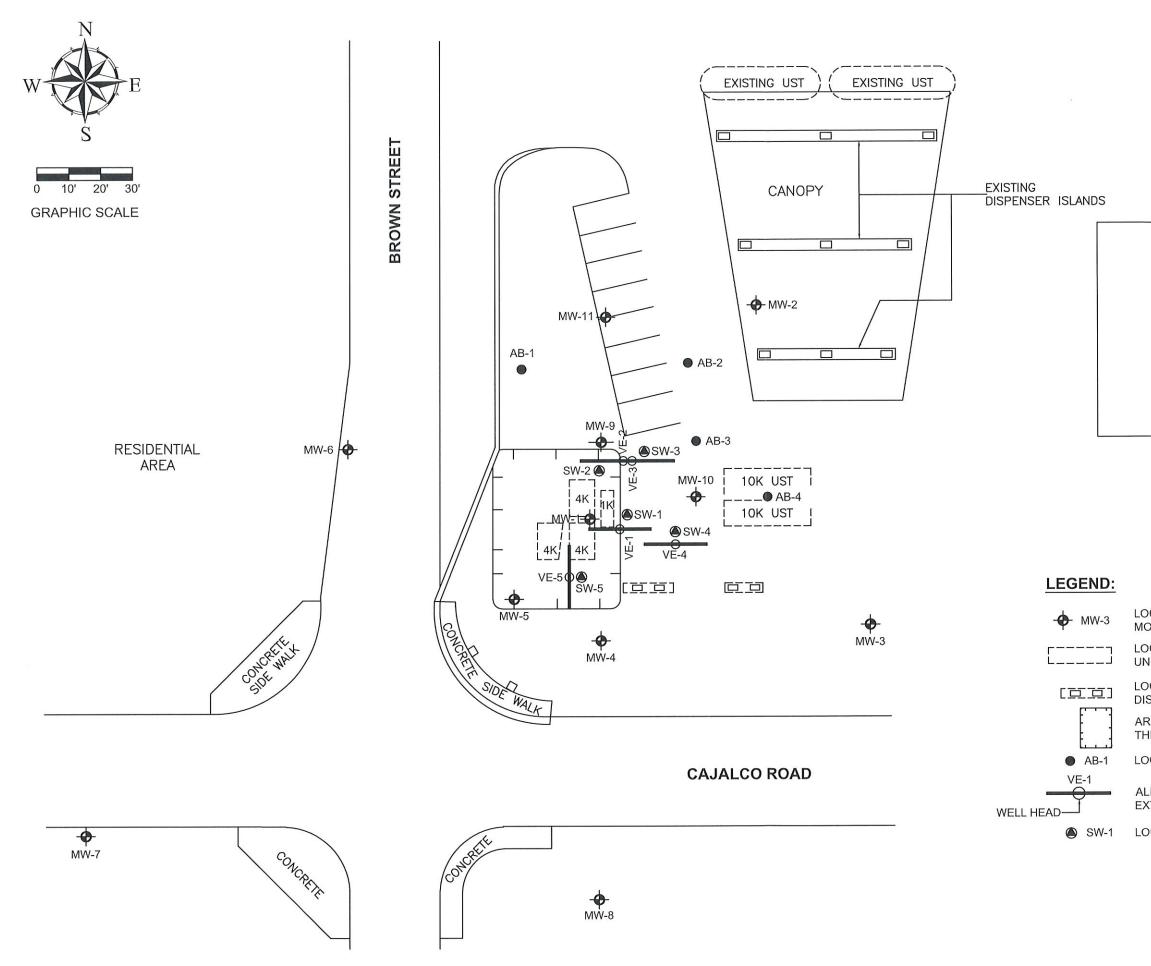
7.0 RECOMMENDATIONS

The following recommendations are made:

1. Continue to observe all existing groundwater monitoring wells, particularly MW-9, for floating

product or sheen. If floating product reappears at MW-9 in the next few groundwater investigations, an appropriate and cost effective floating product recovery program will be recommended.

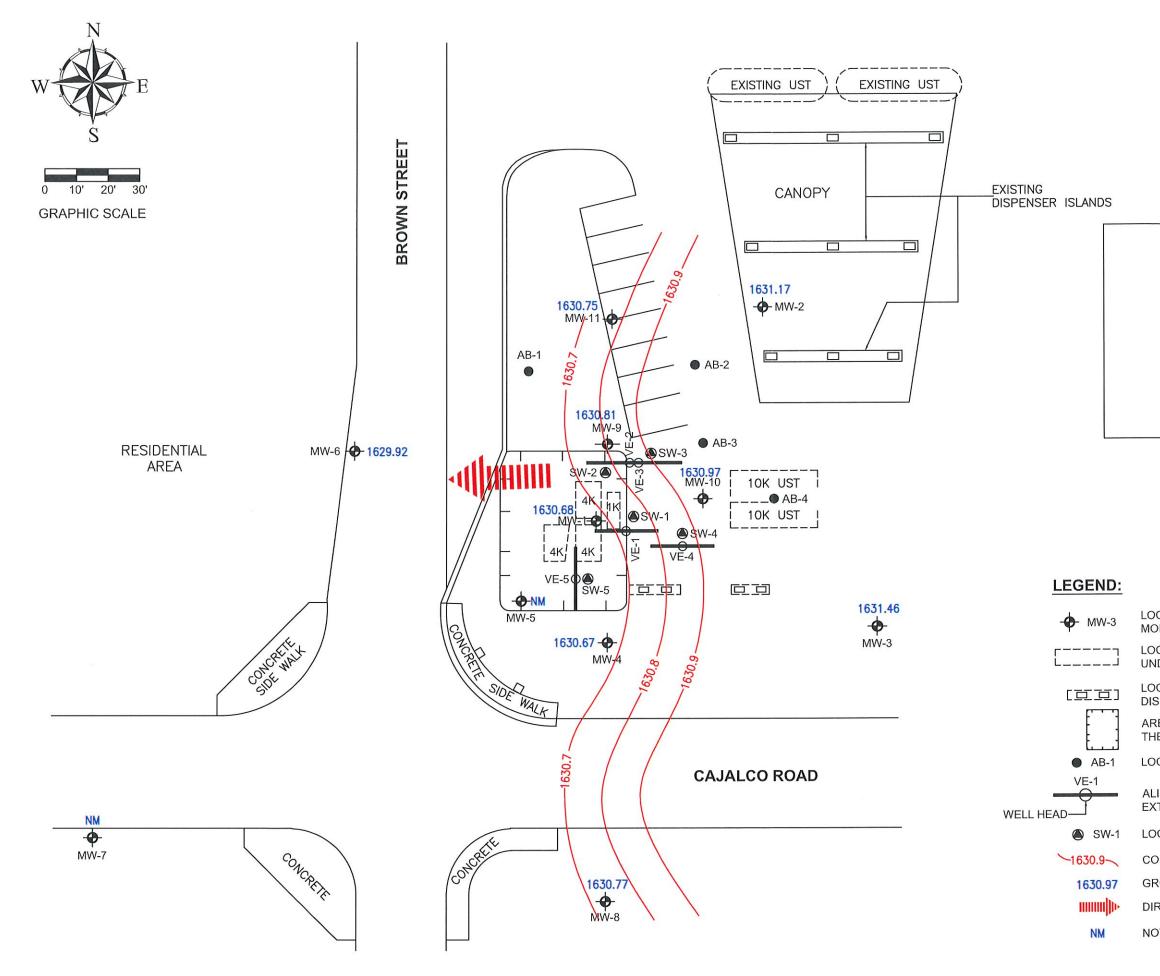

- 2. Additional remedial action is recommended to address the elevated petroleum hydrocarbons contamination at the site.
- 3. Groundwater monitoring is recommended to be continued to determine whether the contamination plume is steady or changing in size.
- 4. Locate and expose MW-5 and resume monitoring of that groundwater monitoring well. MW-7 appears to be under the newly-constructed concrete curb and may be difficult and costly to recommission and it is recommended that MW-7 be relocated. A workplan will be prepared and submitted to address the issues with MW-5 and MW-7.


8.0 LIMITATIONS

It is possible that variations in the subsurface conditions could exist beyond points explored during the course of the assessment. Therefore, it should be recognized that evaluation of geologic conditions is difficult, and an inexact process. Judgments leading to conclusions are often made with an incomplete knowledge of the existing subsurface conditions. Changes in existing conditions could occur at some time in the future due to variations in rainfall, temperature, and other factors not apparent at the time of the field investigation. This assessment was performed in accordance with the general standard of practice exercised by other consultants working under similar conditions in Southern California at the time of the investigation. No warranty, express or implied, is made.

Thank you for this opportunity to be of service. If you have any further questions or comments, please do not hesitate to call us.

A.C.C.E.S. INC. – 2336 S. Sepulveda Blvd, Los Angeles, CA 90064 310-822-3800



EGEND: MW-3 LOCATIONS OF GROUNDWATER MONITORING WELLS LOCATIONS OF FORMER UNDERGROUND TANKS LOCATIONS OF FORMER DISPENSER ISLANDS AREA EXCAVATED DURING THE 2008 REMEDIAL ACTION LOCATIONS OF SOIL BORINGS VE-1 ALIGNMENT OF HORIZONTAL VAPOR EXTRACTION LINES. SW-1 LOCATIONS OF AIR SPARGE WELLS

BUILDING

		ASSOCIATED CONSULTING CIVIL & ENVIRONMENTAL SERVICES INC. P.O. Box 641607, Los Angeles, California 90064 Tel: 310/822 - 3800 Fax: 310/822 - 3803	www.accesengineering.com		
REVISION:	DATE	DATE	DATE		
REM	A		C		
PLAN VIEW OF SITE LOCATION OF MONITORING WELLS	GROUNDWATER MONITORING 1ST SEMI - ANNUAL 2022	MOBIL BALDWIN	21020 CAJALCO ROAD, PERRIS, CA 92370		
IIIE	PROJECT:	ADDRESS:	ADDRESS:		
DRAWN	BY:	GS			
CHECK	BY:	HA			
DATE:		07/26/2	022		
JOB No: 20145					
SCALE: 1" = 30'					
DWG No: FIGURE 2					

			ASSOCIATED CONSULTING CIVIL & ENVIRONMENTAL SERVICES I P.O. Box 641607, Los Angeles, California 90064 Tel: 310 / 822 - 3800 Fax: 310 / 822 - 3803	www.accesengineering.com
S	REVISION:	DATE	DATE	DATE
	REVI	A	В	C
DWATER R R ING TION	PLAN VIEW OF SITE GROUNDWATER ELEVATION CONTOUR MAP	GROUNDWATER MONITORING 1ST SEMI - ANNUAL 2022	MOBIL BALDWIN	21020 CAJALCO ROAD, PERRIS, CA 92370
RINGS	E	PROJECT:	ADDRESS:	ADDRESS:
NTAL VAPOR	DRAWN	BY:	GS	
RGE WELLS	CHECK	BY:	HA	
TION (FT. AMSL)	DATE: 07/26/2022			022
DWATER FLOW	JOB No	o:	2014	5
	SCALE:		1" = 3	30'
	DWG No: FIGURE 3			E 3

FIGURE 3

INC.

BUILDING

LOCATIONS OF GROUNDWATER MONITORING WELLS

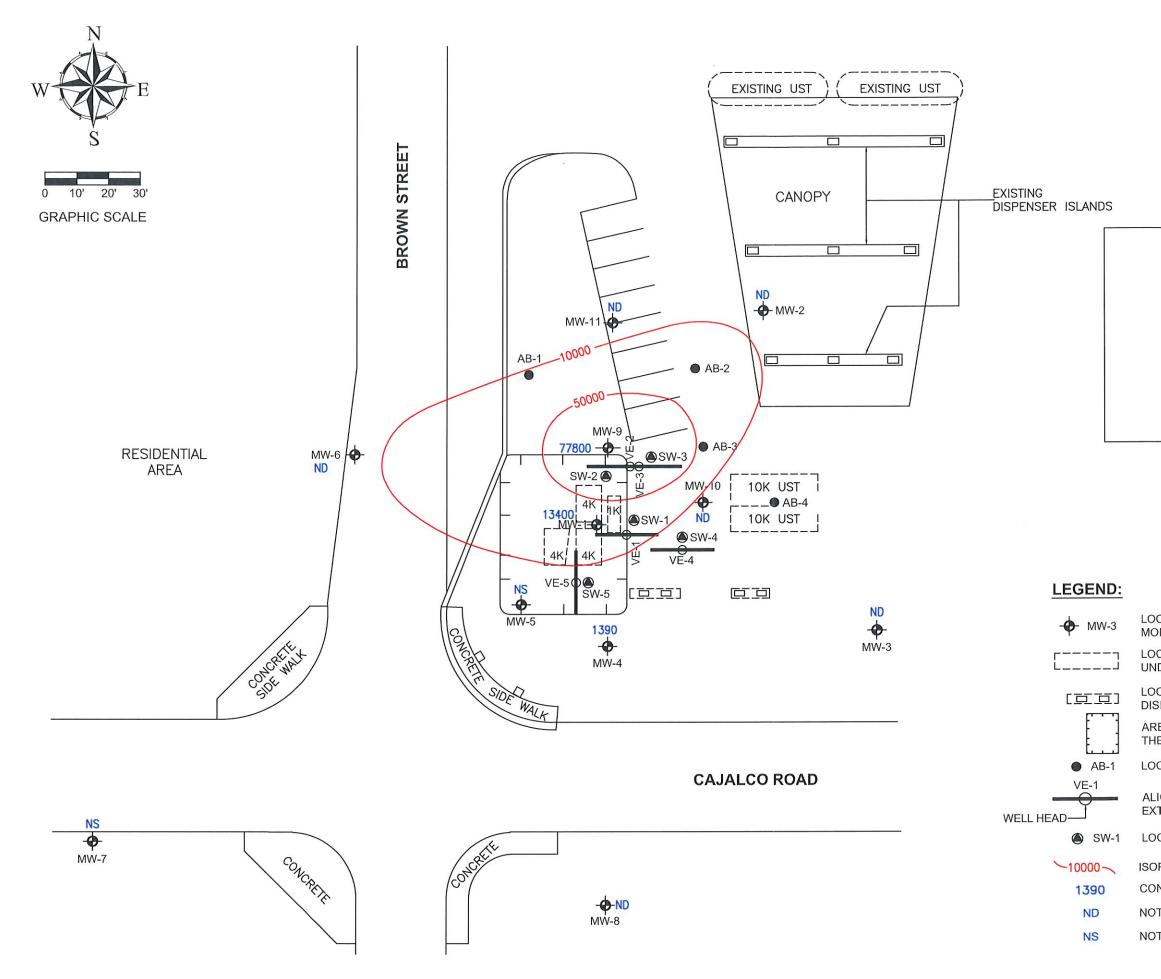
LOCATIONS OF FORMER UNDERGROUND TANKS

LOCATIONS OF FORMER DISPENSER ISLANDS

AREA EXCAVATED DURING THE 2008 REMEDIAL ACTION

LOCATIONS OF SOIL BORINGS

ALIGNMENT OF HORIZONTAL VAPOR EXTRACTION LINES.


LOCATIONS OF AIR SPARGE WELLS

CONTOUR LINES

GROUNDWATER ELEVATION (FT. AMSL)

DIRECTION OF GROUNDWATER FLOW

NOT MEASURED

BUILDING

LOCATIONS OF GROUNDWATER MONITORING WELLS

LOCATIONS OF FORMER UNDERGROUND TANKS

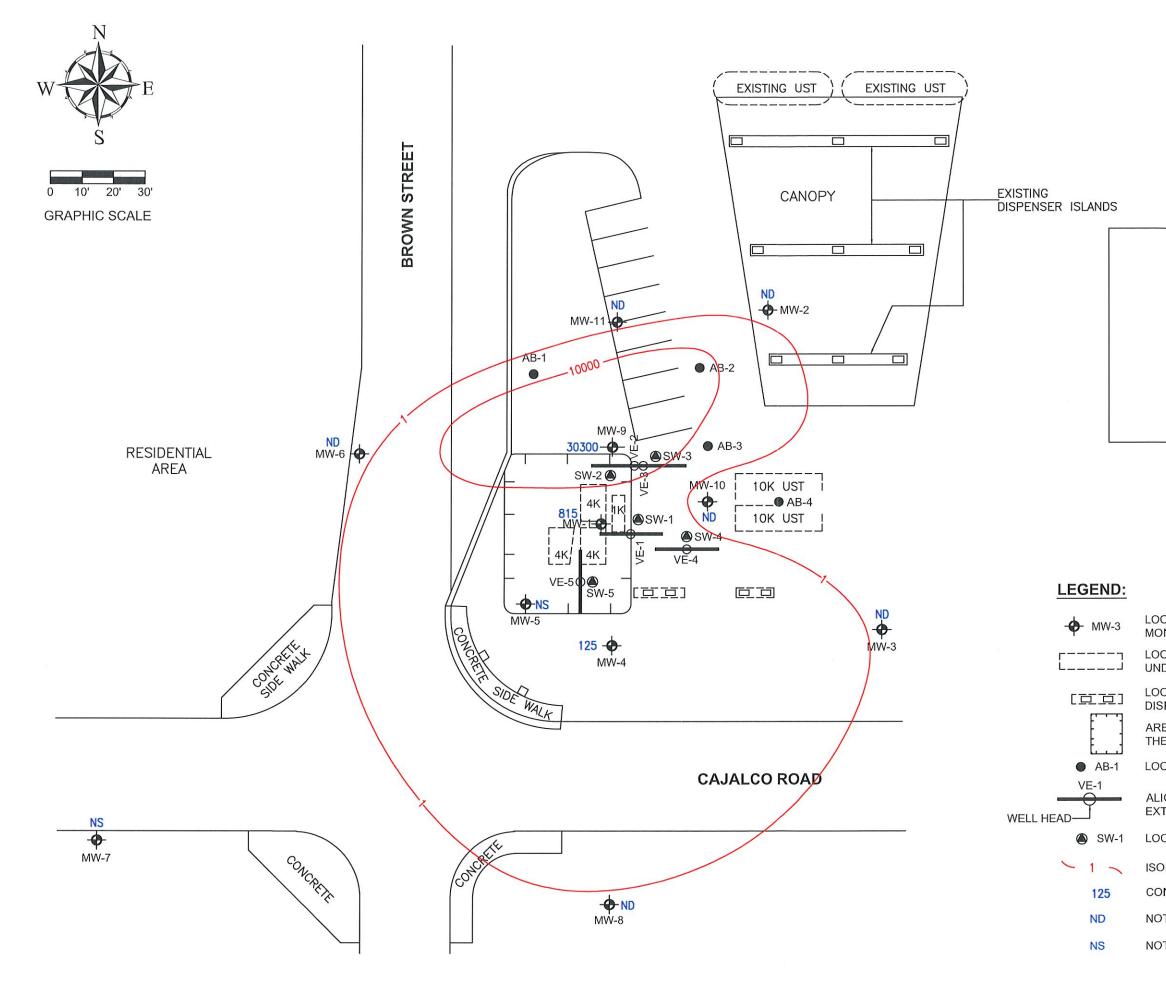
LOCATIONS OF FORMER DISPENSER ISLANDS

AREA EXCAVATED DURING THE 2008 REMEDIAL ACTION

LOCATIONS OF SOIL BORINGS

ALIGNMENT OF HORIZONTAL VAPOR EXTRACTION LINES.

LOCATIONS OF AIR SPARGE WELLS


ISOPLETH LINES

CONTAMINANT CONCENTRATION (µg/L)

NOT DETECTED

NOT SAMPLED

		ASSOCIATED CONSULTING CIVIL & ENVIRONMENTAL SERVICES INC. P.O. Box 641607, Los Angeles, California 90064 Tel: 3101 822 - 3800 Fax: 3101 822 - 3803	www.accesengineering.com			
:NC	DATE	DATE	DATE			
REVISION:	A	В	ပ			
PLAN VIEW OF SITE ISOPLETHS OF TPH-g (µg/L) IN GROUNDWATER	GROUNDWATER MONITORING 1ST SEMI - ANNUAL 2022	MOBIL BALDWIN	21020 CAJALCO ROAD, PERRIS, CA 92370			
ЭЦ	ROJECT:	ADDRESS:	ADDRESS:			
DRAWN	BY:	GS				
CHECK	BY: HA					
DATE:	07/26/2022					
JOB No	o: 20145					
SCALE:	SCALE: 1" = 30'					
DWG No: FIGURE 4						

BUILDING

LOCATIONS OF GROUNDWATER MONITORING WELLS

LOCATIONS OF FORMER UNDERGROUND TANKS

LOCATIONS OF FORMER DISPENSER ISLANDS

AREA EXCAVATED DURING THE 2008 REMEDIAL ACTION

LOCATIONS OF SOIL BORINGS

ALIGNMENT OF HORIZONTAL VAPOR EXTRACTION LINES.

LOCATIONS OF AIR SPARGE WELLS

ISOPLETH LINES

CONTAMINANT CONCENTRATION (µg/L)

NOT DETECTED

NOT SAMPLED

		ASSOCIATED CONSULTING CIVIL & ENVIRONMENTAL SERVICES INC. P.O. Box 641607, Los Angeles, California 90064 Tel: 3101 822 - 3800 Eax: 310 / 822 - 3803	www.accesengineering.com		
ON:	DATE	DATE	DATE		
REVISION:	A	В	C		
PLAN VIEW OF SITE ISOPLETH OF BENZENE (µg/L) IN GROUNDWATER	GROUNDWATER MONITORING 1ST SEMI - ANNUAL 2022	MOBIL BALDWIN	21020 CAJALCO ROAD, PERRIS, CA 92370		
URAWN	ROJECT:	ADDRESS:	ADDRESS:		
		GS			
CHECK	BY: HA				
DATE:	07/26/2022				
JOB No	: 20145				
SCALE:		1" = 3	0'		
DWG No: FIGURE 5					

APPENDX A

.

A.C.C.E.S. INC. – 2336 S. Sepulveda Blvd, Los Angeles, CA 90064 310-822-3800

11007 FOREST PLACE Santa Fe Springs, ca 90670 WWW.Jonesenv.com

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address:	Acces Inc. PO Box 641607 Los Angeles, CA	Report date: Jones Ref. No.:	7/15/2022 ST-20140
Attn:	Ronaldo	Date Sampled:	6/30/2022
Busicate	Mobil Baldwin	Date Received: Date Analyzed:	6/30/2022 7/7-8/2022
Project: Project Address:	21020 Cajalco Rd.	Physical State:	Water
	Perris, CA 92570		

ANALYSES REQUESTED

EPA 8260B by 5030B - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics 1.

Approval:

Juan Camacho

Juan Camacho, M.S. Stationary Lab Technical Manager

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address:	Acces Inc. PO Box 6416 Los Angeles,					Report date: Jones Ref. No.:	7/15/2022 ST-20140							
Attn:	Ronaldo					Date Sampled: Date Received:	6/30/2022 6/30/2022							
Project:	Mobil Baldw	vin				Date Analyzed:	7/7-8/2022							
Project Address:	21020 Cajalo	o Rd.				Physical State:	Water							
	Perris, CA 92	2570												
EPA 8260B by 5030 – Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics														
Sample ID:	MW-1	MW-2	MW-3	MW-4	MW-6									
Jones ID:	ST-20140-01	ST-20140-02	ST-20140-03	ST-20140-04	ST-20140-05	Reporting Limit	<u>Units</u>							
Analytes:						0.5	··· ~ /1							
Benzene	815	ND	ND	125	ND	0.5	μg/L ug/I							
Bromobenzene	ND	ND	ND	ND	ND	0.5 0.5	μg/L α/I							
Bromodichloromethane	ND	ND	ND	ND	ND ND	0.5	μg/L μg/L							
Bromoform	ND	ND	ND	ND ND	ND	0.5	μg/L							
n-Butylbenzene	ND	ND	ND	7.0	ND	0.5	μg/L							
sec-Butylbenzene	ND	ND	ND	ND	ND	0.5	μg/L							
tert-Butylbenzene	ND	ND	ND	ND	ND	0.5	μg/L							
Carbon tetrachloride	ND	ND	ND	ND	ND	0.5	μg/L							
Chlorobenzene	ND	ND	ND		ND	0.5	μg/L							
Chloroform	ND	ND	ND	ND	ND	0.5	μg/L							
2-Chlorotoluene	ND	ND	ND	ND	ND ND	0.5	μg/L μg/L							
4-Chlorotoluene	ND	ND	ND	ND	ND	0.5	μg/L μg/L							
Dibromochloromethane	ND	ND	ND	ND	ND	0.5	μg/L μg/L							
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND		0.5	μg/L							
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	ND	0.5	μg/L μg/L							
Dibromomethane	ND	ND	ND	ND	ND	0.5	μg/L μg/L							
1,2- Dichlorobenzene	ND	ND	ND	ND	ND ND	0.5	μg/L μg/L							
1,3-Dichlorobenzene	ND	ND	ND	ND		0.5	μg/L μg/L							
1,4-Dichlorobenzene	ND	ND	ND	ND	ND	0.5	µg/L µg/L							
1,1-Dichloroethane	ND	ND	ND	ND	ND	0.5								
1,2-Dichloroethane	ND	ND	ND	ND	ND		μg/L ug/I							
1,1-Dichloroethene	ND	ND	ND	ND	ND	0.5	μg/L /T							
cis-1,2-Dichloroethene	ND	ND	ND	ND	ND	0.5 0.5	μg/L ug/I							
trans-1,2-Dichloroethene	ND	ND	ND	ND	ND		µg/L							
1,2-Dichloropropane	ND	ND	ND	ND	ND	0.5	μg/L ug/l							
1,3-Dichloropropane	ND	ND	ND	ND	ND	0.5	μg/L να/Ι							
2,2-Dichloropropane	ND	ND	ND	ND	ND	0.5	μg/L ug/l							
1,1-Dichloropropene	ND	ND	ND	ND	ND	0.5	μg/L ug/I							
cis-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.5	μg/L							

JONES ENVIRONMENTAL LABORATORY RESULTS

Sample ID:	MW-1	MW-2	MW-3	MW-4	MW-6		
Iones ID:	ST-20140-01	ST-20140-02	ST-20140-03	ST-20140-04	ST-20140-05	<u>Reporting Limit</u>	<u>Units</u>
Analytes:							
rans-1,3-Dichloropropene	ND	ND	ND	ND	ND	0.5	μg/L
Ethylbenzene	2790	ND	ND	612	ND	0.5	μg/L
Freon 11	ND	ND	ND	ND	ND	2.5	μg/L
Freon 12	ND	ND	ND	ND	ND	2.5	μg/L
reon 113	ND	ND	ND	ND	ND	2.5	μg/L
Iexachlorobutadiene	ND	ND	ND	ND	ND	0.5	μg/L
sopropylbenzene	ND	ND	ND	25.4	ND	0.5	μg/L
-Isopropyltoluene	ND	ND	ND	ND	ND	0.5	μg/L
Aethylene chloride	ND	ND	ND	ND	ND	0.5	μg/L
Naphthalene	484	ND	ND	20.7	ND	2.5	μg/Ľ
n-Propylbenzene	230	ND	ND	82.6	ND	0,5	μg/L
Styrene	ND	ND	ND	ND	ND	0.5	μg/L
,1,1,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.5	μg/L
,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	0.5	μg/L
Tetrachloroethene	ND	ND	ND	ND	ND	0.5	μg/L
oluene	325	ND	ND	1,1	ND	0.5	μg/L
,2,3-Trichlorobenzene	ND	ND	ND	ND	ND	0.5	μg/L
,2,4-Trichlorobenzene	ND	ND	ND	ND ND		0.5	μg/L
,1,1-Trichloroethane	ND	ND	ND	ND ND		0.5	μg/L
,1,2-Trichloroethane	ND	ND	ND	ND	ND	0.5	μg/L
Frichloroethene	ND	ND	ND	ND	ND	0.5	μg/L
,2,3-Trichloropropane	ND	ND	ND	ND	ND	0,5	μg/L
,2,4-Trimethylbenzene	1120	ND	ND	3.0	ND	0.5	μg/L
,3,5-Trimethylbenzene	252	ND	ND	0.5	ND	0.5	μg/L
Vinyl chloride	ND	ND	ND	ND	ND	0.5	μg/L
n,p-Xylene	4370	ND	ND	3.3	ND	1.0	μg/L
-Xylene	387	ND	ND	ND	ND	0.5	μg/L
Methyl-tert-butylether	ND	ND	ND	ND	ND	2.5	μg/L
Ethyl-tert-butylether	ND	ND	ND	ND	ND	2.5	μg/L
Di-isopropylether	ND	ND	ND	ND	ND	2.5	μg/L
ert-amylmethylether	ND	ND	ND	ND	ND	2.5	μg/L
ert-Butylalcohol	ND	ND	ND	ND	ND	25.0	μg/L
Gasoline Range Organics (C4-C12)	13.4	ND	ND	1.39	ND	0,10	mg/L
Dilution Factor	100	1	1	1	1		
Surrogate Recoveries:						<u>QC Limi</u>	ts
Dibromofluoromethane	105%	103%	103%	105%	105%	60 - 140	
Foluene-da	98%	98%	96%	95%	95%	60 - 140)
4-Bromofluorobenzene	104%	93%	90%	109%	90%	60 - 140)
Batch:	VOC7-070822- 01	VOC7-070722- 01	VOC7-070722- 01	VOC7-070822- 01	VOC7-070722- 01		

ND = Value less than reporting limit

11007 FOREST PLACE Santa Fe Springs, ca 9067(Www.jonesenv.com

JONES ENVIRONMENTAL LABORATORY RESULTS

Client Address:	Acces Inc. PO Box 6416 Los Angeles,			Report date: Jones Ref. No.:	7/15/2022 ST-20140						
Attn:	Ronaldo				Date Sampled: Date Received:	6/30/2022 6/30/2022					
Project:	Mobil Baldw	vin			Date Analyzed: 7/7-8/2						
Project Address:	21020 Cajalo	o Rd.			Physical State:	Water					
r roject rxuur cost	Perris, CA 92				•						
EPA 8260B	by 5030 - Vo	latile Organ	ics by GC/M	S + Oxygenates/O	Fasoline Range Organics						
Sample ID:	MW-8	MW-9	MW-10	MW-11							
Jones ID:	ST-20140-06	ST-20140-07	ST-20140-08	ST-20140-09	Reporting Limit	<u>Units</u>					
Analytes:											
Benzene	ND	30300	ND	ND	0.5	μg/Ľ					
Bromobenzene	ND	ND	ND	ND	0.5	μg/L.					
Bromodichloromethane	ND	ND	ND	ND	0.5	μg/L					
Bromoform	ND	ND	ND	ND	0.5	μg/L σ					
n-Butylbenzene	ND	ND	ND	ND	0.5	μg/L					
sec-Butylbenzene	ND	ND	ND	ND	0.5	μg/L					
tert-Butylbenzene	ND	ND	ND	ND	0.5	μg/L					
Carbon tetrachloride	ND	ND	ND	ND	0.5	μg/L					
Chlorobenzene	ND	ND	ND	ND	0.5	μg/L					
Chloroform	ND	ND	ND	ND	0.5	μg/L					
2-Chlorotoluene	ND	ND	ND	ND	0.5	μg/L					
4-Chlorotoluene	ND	ND	ND	ND	0.5	μg/L					
Dibromochloromethane	ND	ND	ND	ND	0.5	μg/L					
1,2-Dibromo-3-chloropropane	ND	ND	ND	ND	0.5	μg/L					
1,2-Dibromoethane (EDB)	ND	ND	ND	ND	0.5	μg/L					
Dibromomethane	ND	ND	ND	ND	0.5	μg/L					
1,2- Dichlorobenzene	ND	ND	ND	ND	0.5	μg/L					
1,3-Dichlorobenzene	ND	ND	ND	ND	0.5	μg/L					
1,4-Dichlorobenzene	ND	ND	ND	ND	0.5	μg/L					
1,1-Dichloroethane	ND	ND	ND	ND	0.5	μg/L					
1,2-Dichloroethane	ND	ND	ND	ND	0.5	µg/L					
1,1-Dichloroethene	ND	ND	ND	ND	0.5	μg/L					
cis-1,2-Dichloroethene	ND	ND	ND	ND	0.5	μg/L					
trans-1,2-Dichloroethene	ND	ND	ND	ND	0.5	μg/L					
1,2-Dichloropropane	ND	ND	ND	ND	0.5	μg/L					
1,3-Dichloropropane	ND	ND	ND	ND	0.5	μg/L					
2,2-Dichloropropane	ND	ND	ND	ND	0.5	μg/L					
1,1-Dichloropropene	ND	ND	ND	ND	0.5	μg/L					
cis-1,3-Dichloropropene	ND	ND	ND	ND	0.5	μg/L					

JONES ENVIRONMENTAL LABORATORY RESULTS

EPA 8260B by 5030 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

Sample ID:	MW-8	MW-9	MW-10	MW-11		
Jones ID:	ST-20140-06	ST-20140-07	ST-20140-08	ST-20140-09	Reporting Limit Un	<u>its</u>
Analytes:						
trans-1,3-Dichloropropene	ND	ND	ND	ND	0.5 μg	
Ethylbenzene	ND	3640	ND	ND	0.5 µg	
Freon 11	ND	ND	ND	ND	2.5 µg	
Freon 12	ND	ND	ND	ND	2.5 μg	
Freon 113	ND	ND	ND	ND	2.5 μg	
Hexachlorobutadiene	ND	ND	ND	ND	0.5 μg	
Isopropylbenzene	ND	ND	ND	ND	0.5 μg	
4-Isopropyltoluene	ND	ND	ND	ND	0.5 µg	
Methylene chloride	ND	ND	ND	ND	0.5 µg	
Naphthalene	ND	708	ND	ND	2.5 μg	
n-Propylbenzene	ND	202	ND	ND	0.5 μg	
Styrene	ND	ND	ND	ND	0.5 μg	
1,1,1,2-Tetrachloroethane	ND	ND	ND	ND	0.5 µg	
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	0.5 µg	
Tetrachloroethene	ND	ND	ND	ND		g/L
Toluene	ND	30300	ND	ND	0.5 µg	;/L
1,2,3-Trichlorobenzene	ND	ND	ND	ND		g/L
1,2,4-Trichlorobenzene	ND	ND	ND	ND	0.5 µg	g/L
1,1,1-Trichloroethane	ND	ND	ND	ND		g/L
1,1,2-Trichloroethane	ND	ND	ND	ND		g/L
Trichloroethene	ND	ND	ND	ND	0.5 με	g/L
1,2,3-Trichloropropane	ND	ND	ND	ND	0.5 με	g∕L
1,2,4-Trimethylbenzene	ND	2750	ND	ND	0.5 μg	g/L
1,3,5-Trimethylbenzene	ND	640	ND	ND	0.5 μg	g/L
Vinyl chloride	ND	ND	ND	ND	0.5 µg	g/L
m,p-Xylene	ND	15700	ND	ND	1.0 µg	g/L
o-Xylene	ND	5060	ND	ND		g/L
Methyl-tert-butylether	ND	ND	ND	ND	2.5 με	g/L
Ethyl-tert-butylether	ND	ND	ND	ND	2.5 μg	g/L
Di-isopropylether	ND	ND	ND	ND		g/L
tert-amylmethylether	ND	ND	ND	ND	2.5 μg	₂/L
tert-Butylalcohol	ND	ND	ND	ND	25.0 μg	g/L
Gasoline Range Organics (C4-C12)	ND	77.8	ND	ND	0,10 mg	g/L
Dilution Factor	1	200	1	1		
Surrogate Recoveries:					<u>QC Limits</u>	
Dibromofluoromethane	105%	97%	105%	104%	60 - 140	
Toluene-d ₈	97%	101%	96%	95%	60 - 140	
4-Bromofluorobenzene	91%	95%	91%	96%	60 - 140	
Batch:	VOC7-070722- 01	VOC7-070822- 01	VOC7-070722- 01	VOC7-070722- 01		

ND = Value less than reporting limit

11007 FOREST PLACE Santa Fe Springs, ca 9067(Www.jonesenv.com

JONES ENVIRONMENTAL LABORATORY RESULTS

Client: Client Address:	Acces Inc. PO Box 6416	507	Report o Jones R		7/15/2022 ST-20140
Chefft Address:	Los Angeles,		Client R		
	Los Angeles,	CA	Chent is		
Attn:	Ronaldo		Date Sa	mpled:	6/30/2022
Attm.	10110100		Date Re	~	6/30/2022
Duciente	Mobil Baldw	in	Date An		7/7-8/2022
Project:	21020 Cajalo		Physica	•	Water
Project Address:			T nysica	i Biato	i atei
	Perris, CA 92			aantaa	
EPA 8260B I			s by GC/MS + Oxygenates/Gasoline Range Or	games	
Sample ID:	METHOD	METHOD			
<u></u>	BLANK #1	BLANK #2			
Jones ID:	070722- V7MB1	070822- V7MB1	Renort	ing Limit	Units
Analytes:	* //HD1	1 /11(D)			
Benzene	ND	ND	().5	µg/L
Bromobenzene	ND	ND	().5	μg/L
Bromodichloromethane	ND	ND).5	μg/L
Bromoform	ND	ND).5	µg/L
n-Butylbenzene	ND	ND).5	μg/L
sec-Butylbenzene	ND	ND).5	μg/L
tert-Butylbenzene	ND	ND).5	μg/L
Carbon tetrachloride	ND	ND).5	μg/L
Chlorobenzene	ND	ND).5	μg/L
Chloroform	ND	ND).5	μg/L
2-Chlorotoluene	ND	ND).5	μg/L
4-Chlorotoluene	ND	ND),5	μg/L
Dibromochloromethane	ND	ND		0.5	μg/L
	ND	ND		0.5	μg/L
1,2-Dibromo-3-chloropropane	ND	ND		0.5	μg/L
1,2-Dibromoethane (EDB)	ND	ND		0.5	μg/L
Dibromomethane	ND	ND		0.5	μg/L
1,2- Dichlorobenzene	ND	ND		0.5	μg/L
1,3-Dichlorobenzene		ND		0.5	μg/L
1,4-Dichlorobenzene	ND			0.5	μg/L
1,1-Dichloroethane	ND	ND		0.5	μg/L
1,2-Dichloroethane	ND	ND		0.5	μg/L
1,1-Dichloroethene	ND	ND		0.5	μg/L
cis-1,2-Dichloroethene	ND	ND		0.5	μg/L μg/L
trans-1,2-Dichloroethene	ND	ND		0.5	μg/L μg/L
1,2-Dichloropropane	ND	ND			μg/L μg/L
1,3-Dichloropropane	ND	ND		0.5	
2,2-Dichloropropane	ND	ND		0.5	μg/L ug/I
1,1-Dichloropropene	ND	ND		0.5	μg/L μα/I
cis-1,3-Dichloropropene	ND	ND		0.5	μg/L

	<i>y</i>	0	• • • • •	
Sample ID:	METHOD BLANK #1	METHOD BLANK #2		
Jones ID:	070722- V7MB1	070822- V7MB1	Reporting Limit	<u>Units</u>
Analytes:				-
trans-1,3-Dichloropropene	ND	ND	0.5	μg/L
Ethylbenzene	ND	ND	0.5	μg/L
Freon 11	ND	ND	2.5	μg/L
Freon 12	ND	ND	2.5	μg/L
Freon 113	ND	ND	2.5	μg/L
Hexachlorobutadiene	ND	ND	0.5	μg/L
Isopropylbenzene	ND	ND	0.5	μg/L
4-Isopropyltoluene	ND	ND	0.5	μg/L
Methylene chloride	ND	ND	0.5	μg/L
Naphthalene	ND	ND	2.5	μg/L
n-Propylbenzene	ND	ND	0.5	μg/L
Styrene	ND	ND	0.5	μg/L
1,1,1,2-Tetrachloroethane	ND	ND	0.5	μg/L
1,1,2,2-Tetrachloroethane	ND	ND	0.5	μg/L
Tetrachloroethene	ND	ND	0.5	μg/L
Toluene	ND	ND	0.5	μg/L
1,2,3-Trichlorobenzene	ND	ND	0.5	μg/L
1,2,4-Trichlorobenzene	ND	ND	0.5	μg/L
1,1,1-Trichloroethane	ND	ND	0.5	μg/L
1,1,2-Trichloroethane	ND	ND	0.5	μg/L
Trichloroethene	ND	ND	0.5	μg/L
1,2,3-Trichloropropane	ND	ND	0.5	μg/L
1,2,4-Trimethylbenzene	ND	ND	0.5	μg/L
1,3,5-Trimethylbenzene	ND	ND	0.5	μg/L
Vinyl chloride	ND	ND	0.5	μg/L
-	ND	ND	1.0	μg/L
m,p-Xylene	ND	ND	0.5	μg/L
o-Xylene	ND	ND	2.5	μg/L
Methyl-tert-butylether	ND	ND	2.5	μg/L
Ethyl-tert-butylether	ND	ND	2.5	μg/L
Di-isopropylether			2.5	μg/L
tert-amylmethylether	ND	ND	25.0	μg/L
tert-Butylalcohol	ND	ND	23.0	μg D
Gasoline Range Organics (C4-C12)	ND	ND	0.10	mg/L
Dilution Factor	1	1		
Surrogate Recoveries:			QC Limits	
Dibromofluoromethane	100%	104%	60 - 140	
Toluene-d ₈	96%	98%	60 - 140	
4-Bromofluorobenzene	94%	97%	60 - 140	
<u>Batch:</u>	VOC7-070722- 01	VOC7-070822- 01		

EPA 8260B by 5030 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

ND = Value less than reporting limit

11007 FOREST PLACE Santa Fe Springs, ca 90670 WWW.Jonesenv.com

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client:	Acces Inc.	Report date: 7/15/2022						
Client Address:	PO Box 641607	Jones Ref. No.: ST-20140						
	Los Angeles, CA	Client Ref. No.:						
Attn:	Ronaldo	Date Sampled: 6/30/2022						
		Date Received: 6/30/2022						
Project:	Mobil Baldwin	Date Analyzed: 7/7-8/2022						
Project Address:	21020 Cajalco Rd.	Physical State: Water						
U	Perris, CA 92570							

EPA 8260B by 5030 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

GC#:	VOC7-0	70722-01						
Jones ID:	070722-V7LCS1	070722-V7LCSD1			070722-V7CCV1			
	LCS	LCSD		Acceptability		Acceptability		
Parameter	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)		
Vinyl chloride	101%	103%	1.6%	60 - 140	95%	80 - 120		
1,1-Dichloroethene	105%	111%	5.8%	60 - 140	117%	80 - 120		
Cis-1,2-Dichloroethene	105%	108%	2.9%	70 - 130	119%	80 - 120		
1,1,1-Trichloroethane	96%	103%	6.8%	70 - 130	116%	80 - 120		
Benzene	105%	110%	5.1%	70 - 130	115%	80 - 120		
Trichloroethene	101%	108%	6.0%	70 - 130	114%	80 - 120		
Toluene	102%	109%	6.3%	70 - 130	110%	80 - 120		
Tetrachloroethene	93%	99%	5.7%	70 - 130	105%	80 - 120		
Chlorobenzene	106%	113%	6.2%	70 - 130	115%	80 - 120		
Ethylbenzene	99%	104%	5.1%	70 - 130	113%	80 - 120		
1,2,4 Trimethylbenzene	95%	103%	7.8%	70 - 130	111%	80 - 120		
Gasoline Range Organics (C4-C12)	100%	106%	6.0%	70 - 130				
Surrogate Recovery:								
Dibromofluoromethane	102%	102%		60 - 140	116%	60 - 140		
Toluene-d ₈	97%	97%		60 - 140	108%	60 - 140		
4-Bromofluorobenzene	95% 95%			60 - 140	130%	60 - 140		

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

11007 FOREST PLACE Santa Fe Springs, ca 90670 Www.jonesenv.com

JONES ENVIRONMENTAL QUALITY CONTROL INFORMATION

Client: Client Address:	Acces Inc. PO Box 641607 Los Angeles, CA	Report date: 7/15/2022 Jones Ref. No.: ST-20140
Attn:	Ronaldo	Date Sampled: 6/30/2022 Date Received: 6/30/2022
Project: Project Address:	Mobil Baldwin 21020 Cajalco Rd. Perris, CA 92570	Date Received: 0/50/2022 Date Analyzed: 7/7-8/2022 Physical State: Water

EPA 8260B by 5030 - Volatile Organics by GC/MS + Oxygenates/Gasoline Range Organics

GC#:	VOC7-0	70822-01					
Jones ID:	070822-V7LCS1	070822-V7LCSD1			070822-V7CCV1		
	LCS	LCSD		Acceptability		Acceptability	
<u>Parameter</u>	Recovery (%)	Recovery (%)	<u>RPD</u>	Range (%)	<u>CCV</u>	Range (%)	
Vinyl chloride	94%	95%	1.6%	60 - 140	89%	80 - 120	
1,1-Dichloroethene	90%	99%	9.5%	60 - 140	101%	80 - 120	
Cis-1,2-Dichloroethene	91%	104%	12.8%	70 - 130	107%	80 - 120	
1,1,1-Trichloroethane	83%	90%	7.9%	70 - 130	93%	80 - 120	
Benzene	93%	104%	10.9%	70 - 130	104%	80 - 120	
Trichloroethene	95%	107%	12.1%	70 - 130	104%	80 - 120	
Toluene	91%	104%	13.2%	70 - 130	99%	80 - 120	
Tetrachloroethene	82%	91%	10.3%	70 - 130	87%	80 - 120	
Chlorobenzene	99%	112%	12.8%	70 - 130	107%	80 - 120	
Ethylbenzene	92%	101%	9.4%	70 - 130	100%	80 - 120	
1,2,4 Trimethylbenzene	105%	107%	2.1%	70 - 130	105%	80 - 120	
Gasoline Range Organics (C4-C12)	95%	104%	8.8%	70 - 130			
Surrogate Recovery:							
Dibromofluoromethane	99%	100%		60 - 140	102%	60 - 140	
Toluene-d ₈	97%	97%		60 - 140	94%	60 - 140	
4-Bromofluorobenzene	95%	97%		60 - 140	103%	60 - 140	

LCS = Laboratory Control Sample

LCSD = Laboratory Control Sample Duplicate

CCV = Continuing Calibration Verification

RPD = Relative Percent Difference; Acceptability range for RPD is $\leq 20\%$

	Сотрану		ACCES INC	Company Company	Relinquished By(Stanature)	<u> </u>	Mw- 10			MW- 6	1 -	Mw-3	/ Mw- 2	MW-1	Sample ID		Ronaldo	310 - 822 - 3860	rarboleda @accesengineering.com	PERRIS, CA	21020 CAJALCO	MOBIL BALDWIN	client ACCES INC	ENVIR
			6	3		< }	_	-	8	_0				6/30/22 11:55	Date		Sampler	(senaine	92570	67 CJ	z		ENVIRONMENTAL
	Date	Printed Name	30/27	ERIC .	Printed Name	1:00 SI	100	:25 S	S 55:8	9:30 S	11:15 5	10:40 S	5 So: 01		Sample Collection Time			(erina. c		•			
	Time		Time	Z		ST-20140-09	5-20140-08	57-20140-07	55-20140-04	ST-20140 - 05	J-20140-04	ST-20140-03	57-20140-02	57-20140-01	Jones ID Lab Use Only				•			0		•
Company JONC		Received By Laboratory (Signature)	Company	neceived by (Signature)		-9	<u>~</u>		6	5	2	E(Hcl	Preservative	HNU3 - Nitric Acid O - Other (See Notes)	MeOH - Methanol HCi - Hydrochlonic Acid	AB - Amber Bottle P - Plastic SDBI - Sodium Bioutete	SS - Stainless Steel Sieeve BS - Brass Sleeve G - Glass Jar	V - VOAS AS - Acetate Sleeve	Sample Container Preservative Abbreviations	Client Project #	Date	11007 Forest Pl. Santa Fe Springs, CA 90670 (714) 449-9837 Fax(714)449-9685 www.jonesenv.com
)es	(Hory (Signature)		(auni		C								Ao mi Vials A	Container Sample Soil (S), Slu	Matri: Idge (S	K: L), Ague	ous (A),			.			
6	**********													× ×	8260 DXY6	B: 1	"PH	i, 6	tex		Vocs	a Rush 48 Hours a Rush 72 Hours	Turn Around Requested: D Immediate Attention D Rush 24 Hours	S
10100 D	KURN	Printed Name	Date	Printed Name																	Analysis Requested		equested:	D.
RFI mi			Time																		equested	Global 10 T 0606599148	Report Options	of-Cus
provided	analyses have	Client signa		Total N											Hold Number o	of Cont	lainers					79148	`	tod
provided herein is correct and accurate	analyses have been requested, and the information	Client signature on this Chain of Custody form constitutes acknowledgment that the above		Total Number of Containers										10	Notes & Special Instructions				Chilled Dyes Dno Sealed Dyes Dno	Sample Condition as Received:	, D D	5-20140	Jones Project #	Chain-of-Custody Record

APPEN DIX B

A.C.C.E.S. INC. – 2336 S. Sepulveda Blvd, Los Angeles, CA 90064 310-822-3800

G.W. ELEVATION (FT - AMSL)	1,607.420	1,612.230	1,610.080	1,607.230	1,610.890	1,610.510	1,608.910	1,608.570	1,614.570	1,613.350	1,611.450	1,609.990	1,611.070	1,609.410	1,612.300	1,611.170	1,610.980	1,610.990				1,610.243	1,611.963	1,610.833	1,608.843	1,608.233	1,613.563	1,611.953	1,607.583	1,607.783	1,613.913	1,611.793	1,609.343	1,608.243	1,610.583	1,610.203	1,607.843	1,607.663	1,610.723
DEPTH TO G.W. (FT)	11.090	6.280	8.430	11.280	7.620	8.000	9.600	9.940	3.940	5.160	7.060	8.520	7.440	9.100	6.210	7.340	7.530	7.520	NA***	NA***	NA***	8.100	6.380	7.510	9.500	10.110	4.780	6.390	10.760	10.560	4.430	6.550	9.000	10.100	7.760	8.140	10.500	10.680	7.620
TBA (µg/L)	NA	AN	AN	AN	ND	ND	ND	ND	ND	NA	AN	NA	ND	DN	ΔN	ΔN	QN	Q	Q	QN	ΔN	DN	283.0	QN	QN	DN	DN	NA	QN	QN									
TAME (µg/L)	NA	ΝA	AN	AN	AN	AN	ND	ND	QN	ND	QN	NA	NA	NA	QN	DN	ND	ND	ND	QN	DN	ΠN	ND	ΩN	DN	QN	an	ΩN	QN	AN	QN	Q							
DIPE (µg/L)	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	AN	AN	NA	ND	ND	DN	ND	QN	AN	NA	NA	QN	ND	ND	ND	ND	ND	QN	DN	ND	ΩN	44	Q	QN	QN	DN	AN	QN	Q
ETBE (µg/L)	NA	AN	A	NA	DN	ND	ND	QN	QN	AN	NA	NA	QN	DN	DN	QN	DN	DN	QN	QN	QN	QN	Q	QN	Q	Q	QN	NA	ND	DN									
MTBE (µg/L)	82.0	214.0	389.0	283.0	51.0	1,270.0	381.0	70.0	59.0	353.0	164.0	280.9	102.0	167.0	ND	408.0	318.0	76.5	AN	NA	NA	10.0	2.4	103.0	150.0	196.0	4.4	42.9	32.4	98.5	8.4	160.0	334.0	QN	QN	31.7	66.4	ND	26.6
(hg/L) (hg/L)	3,518.0	1,102.0	3,653.0	1,895.0	321.0	2,217.0	3,823.0	767.0	111.0	2,210.0	3,453.0	3,853.3	217.9	8,950.0	19,000.0	5,010.0	6,320.0	673.0	AN	NA	NA	505.0	av	2,430.0	5,150.0	7,300.0	239.0	2,940.0	10,500.0	4,850.0	93.0	5,470.0	10,500.0	10,480.0	151.0	28.3	3,120.0	1,040.0	71.4
ETHYL- BENZENE (µg/L)	691.0	55.0	888.0	637.0	g	839.0	1,781.0	427.0	5.0	1,027.0	1,162.0	1,129.6	84.0	1,640.0	3,100.0	1,280.0	1,520.0	157.0	NA	ΨN	AA	AN	NA	AN	NA	AN	AN	718.0	2,110.0	1,040.0	16.1	1,470.0	2,260.0	1,760.0	152.0	QN	980.0	129.0	QN
TOLUENE (µg/L)	6,768.0	1,562.0	9,325.0	5,150.0	403.0	4,223.0	9,552.0	8,910.0	74.0	11,270.0	10,783.0	13,672.3	306.8	23,900.0	52,800.0	12,600.0	19,300.0	736.0	NA	NA	AN	194.0	QN	4,970.0	12,900.0	13,800.0	133.0	3,120.0	21,600.0	5,960.0	127.0	16,400.0	18,200.0	15,800.0	187.0	3.9 9	1,720.0	118.0	11.7
BENZENE (µg/L)	4,841.0	1,734.0	12,343.0	9,525.0	1,187.0	6,482.0	12,736.0	14,979.0	423.0	17,977.0	20,366.0	31,399.0	1,393.8	26,100.0	39,900.0	17,000.0	24,200.0	4,430.0	AN	AN	NA	850.0	DN	9,200.0	16,800.0	19,700.0	59.1	4,420.0	20,100.0	10,100.0	208.0	12,800.0	23,800.0	19,100.0	1,690.0	382.0	8,170.0	9,920.0	1,370.0
TPH AS DIESEL (µg/L)	AN	NA	NA	AN	NA	AN	AA	NA	QN	NA	NA	NA	AN	AN	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	AN	AN	AN	NA	NA	NA	NA	NA							
TPH AS GASOLINE (µg/L)	24,620.0	9,570.0	48,094.0	26,809.0	4,325.0	34,815.0	52,082.0	28,801.0	1,062.0	42,026.0	66,131.0	61,313.0	8,414.0	108,000.0	217,000.0	56,900.0	67,200.0	12,500.0	NA	AN	AA	5,650.0	DN	39,900.0	66,100.0	69,500.0	3,200.1	23,800.0	91,400.0	40,600.0	1.200.0	55.000.0	117.000.0	71.900.0	4.480.0	1,030.0	23.500.0	15,200.0	2,780.0
DATE SAMPLED	01/08/03	04/16/03	07/14/03	10/14/03	03/05/04	05/13/04	07/28/04	10/26/04	01/25/05	05/13/05	07/21/05	10/04/05	01/04/06	12/08/06	03/15/07	06/08/07	20/20/60	12/14/07	03/28/08	05/23/08	08/26/08	01/06/09	03/13/09	06/11/09	60/03/08	12/08/09	02/18/10	05/19/10	09/29/10	12/16/10	03/17/11	06/17/11	09/13/11	11/11/11	02/10/12	05/15/12	08/24/12	12/10/12	02/28/13
SAMPLE SOURCE	MW-1													**																									

** first sampling event conducted by AI, data prior to this date was generated by EAR * Not Analyzed for this Contaminant ** not analyzed as well was destroyed in soil excavation 03/2008. **** Not analyzed as car was parked over the monitoring well.

TABULATED GROUNDWATER SAMPLE ANALYTICAL RESULTS	BAI
---	-----

G.W. ELEVATION (FT - AMSL)	1,610.653	1,608.023	1,610.123	1,609.843	1,609.743	1,606.363	1,607.423	1,606.603	1,607.633	1,606.123	1,610.223	1,607.683	1,608.763	1,606.253	1,611.843	1,630.080	1,634.350	1,630.550	1,632.560	1,629.710	1,630.680	1,607.810	1,613.200	1,610.510	1,607.610	1,611.310	1,610.890	1,609.310	1,608.830	1,615.730	1,613.860	1,611.410	1,610.360	1,611.510	1,609.650	1,610.350	1,611.460	1,611.370	1,611.390	
DEPTH TO G.W. (FT)	7.690	10.320	8.220	8.500	8.600	11.980	10.920	11.740	10.710	12.220	8.120	10.660	9.580	12.090	6.500	10.550	6.280	10.080	8.070	10.920	9.950	9.800	4.410	7.100	10.000	6.300	6.720	8.300	8.780	1.880	3.750	6.200	7.250	6.100	7.960	7.260	6.150	6.240	6.220	NA***
TBA (µg/L)	ΩN	DN	QN	ND	DN	DN	ND	DN	ND	DN	ND	9.6	DN	ND<25	ND<50	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	NA	NA	NA	NA	ΑN	AN	NA	NA	NA	NA	AN	AN	AN	QN	728.0	DN	QN	QN	AN
TAME (µg/L)	ΩN	ND	ND	ND	QN	QN	QN	DN	QN	an	DN	DN	QN	ND<2.5	S>ON	ND<2.5	ND<2.5		ND<2.5	ND<2.5	ND<2.5	NA	NA	AN	AN	AN	NA	NA	NA	NA	NA	AN	AN	AN	QN	QN	DN	QN	Q	AN
DIPE (µg/L)	DN	ND	ND	ND	DN	DN	QN	DN	DN	ΩN	DN	QN	Q	ND<2.5	ND<5	ND<2.5	ND<2.5		ND<2.5	ND<2.5	ND<2.5	 NA	AN	NA	AN	AN	AN	AN	NA	AN	NA	NA	AN	AN	Q	29.9	DN	ND	Q	AN
ETBE (µg/L)	DN	DN	QN	DN	QN	DN	QN	Q	QN	QN	QN	QN	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	NA	AN	AN	AN	AN	AN	AN	NA	NA	AN	AN	AN	A	Q	QN		DN	Q	AN
MTBE (µg/L)	43.7	328.0	22.6	1.4	QN	DN	DN	QN	QN	QN	QN	QN	QN	ND<2.5	ND<5	59.7	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	DN	QN	QN	QN	QN	QN	QN	DN	QN	DN	QN	QN	DN	QN	328.0	DN	QN	QN	
(hg/L) (hg/L)	307.0	8,240.0	240.0	221.0	15,900.0	18,600.0	7,180.0	12,300.0	3,240.0	35.6	7,040.0	13,650.0	7,070.0	5,305.0	787.0	4,857.0	581.0	620.0	3,631.0	4,166.0	4,757.0	QN	QN	QN	QN	QN	DN	0Z	g	QN	QN	QN	DN	QN	QN	17,900.0	QN	DN	QN	AN
ETHYL- BENZENE (µg/L)	387.0	1,220.0	29.7	24.1	1,930.0	2,520.0	1,050.0	2,040.0	1,810.0	2.6	1,480.0	3,890.0	1,740.0	ND<0.5	336.0	2,720.0	ND<0.5	1.290.0	1,420.0	2,750.0	2,790.0	QN	QN	DN	QN	QN	QN	DN	DN	QN	QN	QN	QN	QN	QN	2,810.0	QN	DN	ND	ΔN
TOLUENE (µg/L)	409.0	1,930.0	260.0	83.8	38,300.0	31,300.0	10,300.0	11,300.0	8,000.0	QN	3,090.0	613.0	1,950.0	12,700.0	1,420.0	1,530.0	390.0	ND<0.5	509.0	425.0	325.0	QN	QN	DN	QN	DN	DN	QN	QN	QN	DN	DN	DN	QN	2.2	37,600.0	QN	QN	DN	AN
BENZENE (µg/L)	4,740.0	21,800.0	160.0	7.8	26,800.0	15,200.0	4,370.0	6,380.0	3,810.0	QN	2,020.0	8,350.0	1,000.0	17,300.0	313.0	2,200.0	74.3	2.160.0	394.0	2,300.0	815.0	ΩΝ	QN	ND	QN	QN	QN	ND	QN	DN	DN	QN	DN	QN	2.3	43,600.0	DN	QN	ND	
TPH AS DIESEL (µg/L)	AN	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA	AN	AN	NA	NA	AA	NA	AN	NA	NA	AN	NA	NA	NA	AN	NA	AN	NA	NA	NA	NA	AN	AN	AN	AN	AN	DN	NA	AN	NA
TPH AS GASOLINE (µg/L)	10,500.0	44,400.0	1,620.0	1,170.0	106,000.0	115,000.0	48,400.0	54,900.0	51,500.0	210.0	22,700.0	9,050.0	21,500.0	52,200.0	12,600.0	26,500.0	2.670.0	10.400.0	16,300.0	19,100.0	13,400.0	QN	DN	DN	QN	QN	QN	QN	206.000.0	Q	QN	g								
DATE SAMPLED	05/09/13	09/24/13	12/11/13	03/07/14	05/09/14	11/17/14	07/02/15	10/21/15	06/27/16	01/23/17	06/13/17	10/25/17	05/09/18	11/30/18	06/05/19	11/06/19	06/22/20	12/14/20	05/20/21	11/04/21	06/30/22	01/08/03	04/16/03	07/14/03	10/14/03	03/05/04	05/13/04	07/28/04	10/26/04	01/25/05	05/13/05	07/21/05	10/04/05	01/04/06	12/08/06	03/15/07	06/08/07	20/20/60	12/14/07	03/28/08
SAMPLE SOURCE																						MW-2													**					

** first sampling event conducted by AI, data prior to this date was generated by EAR * Not Analyzed for this Contaminant *** not analyzed as well was destroyed in soil excavation 03/2008. **** Not analyzed as car was parked over the monitoring well.

G.W. ELEVATION (FT - AMSL)			1,610.642	1,612.242		1,608.152	1,607.622	1,613.102	1,610.332	1,606.952	1,607.172	1,613.312	1,611.182	1,609.252	1,607.532	1,609.992	1,607.272	1,607.232	1,606.652	1,610.052	1,610.132	1,607.422	1,606.322	1,607.602	1,608.372	1,603.502	1,604.692	1,603.692								1,630.060	1,634.890	1,631.060	1,633.090	1,630.090	1,631.170
DEPTH TO G.W. (FT)	NA***	NA***	7.410	5.810	NA***	8.900	9.430	3.950	6.720	10.100	9.880	3.740	5.870	7.800	9.520	7.060	9.780	9.820	10.400	7.000	6.920	9.630	10.730	9.450	8.680	13.550	12.360	13.360	New TOC	11.810	7.520	11.350	9.320	12.320	11.240						
TBA (µg/L)	NA	NA	QN	QN	NA	QN	QN	DN	DN	QN	QN	QN	DN	DN	DN	QN	DN	AN	QN	QN	QN	ND	DN	QN	QN	ND	DN	QN	DN	Q	QN	ND	DN	ND<25	ND<50	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25
TAME (µg/L)	NA	NA	QN	92	NA	QN	DN	QN	ΩN	ND	Q	QN	ND	QN	ΩN	QN	Q	AN	QN	QN	Q	QN	QN	g	QN	DN	ND	ND	DN	DN	DN	ND	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND<2.5
DIPE (µg/L)	AN	NA	DN	Q	AN	QN	QN	QN	QN	ND ND	DN	DN	DN	ΔN	DN	DN	DN	NA	DN	QN	QN	DN	Q	QN	gN	QN	DN	DN	QN	DN	Q	QN	QN	ND<2.5	-	ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND<2.5
ETBE (µg/L)	ΝA	NA	DN	Q	NA	QN	QN	QN	DN	QN	ΟN	QN	QN	an	an	QN	QN	NA	Q	QN	DN	QN	Q	Q	QN	QN	QN	DN	QN	DN	QN	DN	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND<2.5
MTBE (µg/L)			ND	Q		DN	QN	DN	DN	ND	ND	DN	QN	ΩN	DD	DN	DN	DN	QN	DN	Q	ND	QN	DN	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5								
XYLENES (µg/L)	ΑN	AN	QN	an	AA	30.1	QN	QN	QN	QN	DN	QN	Q	QN	QN	QN	QN	QN	DN	DN	QN	QN	2.5	QN	14.2	QN	ND<0.5	ND<1.0	6.1	3.0	673.0	0.8	ND<0.5	ND<0.5							
ETHYL- BENZENE (µg/L)	AN	AN	QN	QN	AN	6.5	DN	DN	QN	QN	ND	QN	QN	QN	DN	QN	QN	DN	QN	QN	QN	QN	QN	ND	QN	QN	QN	QN	QN	QN	QN	3.9	QN	ND<0.5	ND<1.0	2.8	0.8	453.0	2.1	ND<0.5	ND<0.5
TOLUENE (µg/L)	AN	NA	QN	QN	AN	17.3	QN	QN	QN	QN	Q	QN	DN	DN	QN	DN	ND	QN	QN	QN	QN	QN	3.4	QN	1.5	QN	ND<0.5	ND<1.0	1.4	1.3	806.0	ND<0.5	ND<0.5	ND<0.5							
BENZENE (µg/L)			QN	Q		3.9	QN	QN	QN	QN	Q	QN	DN	QN	QN	QN	ND	DN	ND	DN	DN	QN	DN	5.2	DN	ND<0.5	ND<1.0	1.3	ND<0.5	1.5	2.2	ND<0.5	ND<0.5								
TPH AS DIESEL (µg/L)	NA	NA	NA	DN	NA	NA	NA	NA	AN	NA	NA	NA	NA	AN	AN	AN	AN	NA	NA	NA	AN	AN	NA	AN	AA	AN	AN	NA	NA	NA	AN	AN	ΑN	NA	AN	AN	AN	AN	NA	NA	NA
TPH AS GASOLINE (µg/L)			QN	QN		169.0	QN	DN	DN	DN	300.0	QN	ND<100	ND<200	ND<100	ND<100	6.000.0	ND<100	ND<100	ND<100																					
DATE SAMPLED	05/23/08	08/26/08	01/06/09	03/13/09	06/11/09	00/03/00	12/08/09	02/18/10	05/19/10	09/29/10	12/16/10	03/17/11	06/17/11	09/13/11	11/11/1	02/10/12	05/15/12	08/24/12	12/10/12	02/28/13	05/09/13	09/24/13	12/11/13	03/07/14	05/09/14	11/17/14	07/02/15	10/21/15	06/27/16	01/23/17	06/13/17	10/25/17	05/09/18	11/30/18	06/05/19	11/06/19	06/22/20	12/14/20	05/20/21	11/04/21	06/30/22
SAMPLE SOURCE																																									

first sampling event conducted by AI, data prior to this date was generated by EAR
 Not Analyzed for this Contaminant
 not analyzed as well was destroyed in soil excavation 03/2008.
 Not analyzed as car was parked over the monitoring well.

G.W. ELEVATION (FT - AMSL)	1 200 200	1,008.200	1,613.400	1,610.950	1,608.140	1,611.610	1,611.160	1,609.550	1,609.510	1,615.050	1,614.380	1,612.030	1,610.760	1,611.900	1,610.280	1,613.520	1,612.010	1,611.950	1,611.960	1,613.380	1,612.050	1,608.910	1,611.000	1,612.300	1,611.540	1,609.570	1,608.900	1,614.260	1,611.560	1,608.220	1,608.460	1,614.430	1,612.470	1,609.400	1,608.860	1,611.200	1,610.920	1,608.520	1,608.280	1,611.220	1,611.300	
DEPTH TO G.W. (FT)	011 01	12.440	7.300	9.750	12.560	9.090	9.540	11.150	11.190	5.650	6.320	8.670	9.940	8.800	10.420	7.180	8.690	8.750	8.740	7.320	8.650	11.790	9.700	8.400	9.160	11.130	11.800	6.440	9.140	12.480	12.240	6.270	8.230	11.300	11.840	9.500	9.780	12.180	12.420	9.480	9.400	
TBA (µg/L)		AN	ΔN	NA	NA	AN	AN	NA	AN	NA	NA	NA	NA	NA	QN	QN	QN	QN	QN	DN	QN	QN	QN	Q	QN	DN	QN	QN	QN	QN	QN	NA	DN	QN	QN							
TAME (µg/L)		AN	AN	AN	AN	NA	AN	AN	AN	AN	NA	AN	AN	AN	QN	DN	QN	QN	ΩN	QN	Q	NA	QN	QN	Q																	
DIPE (Jug/L)		AN	AN	NA	NA	AN	AN	AN	AN	AN	NA	ΝA	NA	AN	QN	g	g	g	QN	DN	DN	QN	QN	QN	QN	QN	QN	DN	DN	DN	QN	QN	QN	DN	QN	Q	Q	AN	QN	DN	Q	
ETBE (µg/L)		A	A	NA	NA	NA	NA	AN	NA	NA	AN	AN	AN	AN	QN	QN	g	QN	QN	QN	Q	QN		Q	Q	QN	DN	Q	QZ	Q	g	DN	QN	QN	QN	g	av	AN	QN	ΩN	Q	
MTBE (µg/L)	!	nN	QN	QN	QN	QN	DN	QN	QN	Q	QN	DN	QN	DN	QN	Q	QN	g	QN	DN	QN	QN	QN	g	QN	QN	DN	DN														
XYLENES (µg/L)		n	QN	Q	QN	an	QN	QN	19.8	8,9	DN	QN	QN	CIN	QN	CN	QN	QN	QN	11.6	QN	DN	QN	DN	QN																	
ETHYL- BENZENE (µg/L)	!	QN	DN	QN	QN	ΔN	ΩN	4.6	8.0	DN	QN	QN	GN	QN	CN	QN	QN	QN	2.9	QN	ON																					
TOLUENE (µg/L)		QN	DN	Q	QN	QN	DN	DN	DN	DN	DN	DN	QN	DN	20.9	2.4	ND	QN	GN	GN	GN	CN	QN	QN	QN	4.6	aN	QN	QN	QN	DN	QN	QN	QN	QN	DN	QN	QN	QN	QN	Q	
BENZENE (µg/L)		QN	DN	DN	QN	13.2	41.1	QN	QN	QN	CN ND	CN CN	UN	UN	GN	QN	1.6	QN	QN	DN	DN	DN	DN	DN	QN	QN	QZ	QN	QN	QN	QN	QN										
TPH AS DIESEL (µg/L)		AN	NA	NA	NA	NA	NA	AN	AN	NA	AN	NA	AN	NA	AN	AN	QN	NA	AN	AN	NA	NA	AN	NA	AN	NA																
TPH AS GASOLINE (µg/L)		QN	Q	QN	Q	139.0	469.0	CN	UN I							QN	63.0	QN	Q	QN	Q	QN	Q																			
DATE SAMPLED		01/08/03	04/16/03	07/14/03	10/14/03	03/05/04	05/13/04	07/28/04	10/26/04	01/25/05	05/13/05	07/21/05	10/04/05	01/04/06	12/08/06	03/15/07	06/08/07	00/02/07	10/10/01	12/17/08	03/20/00	08/26/08	01/08/00	03/13/09	06/11/09	09/03/09	12/08/09	02/18/10	05/19/10	09/29/10	12/16/10	03/17/11	06/17/11	09/13/11	11/11/1	02/10/12	05/15/12	08/24/12	12/10/12	02/28/13	05/09/13	-
SAMPLE SOURCE		MW-3													**																											_

** first sampling event conducted by AI, data prior to this date was generated by EAR • Not Analyzed for this Contaminant *** not analyzed as well was destroyed in soil excavation 03/2008. **** Not analyzed as car was parked over the monitoring well.

G.W. ELEVATION (FT - AMSL)	1,608.550	1,609.620	1,610.180	1,609.530	1,606.850	1,607.870	1,606.950	1,608.000	1,606.380	1,610.750	1,608.340	1,610.550	1,607.400	1,612.230	1,630.950	1,634.910	1,631.420	1,633.300	1,630.560	1,631.460	1,607.470	1,612.640	1,610.170	1,607.380	1,610.870	1,610.440	1,608.890	1,608.660	1,614.710	1,613.540	1,611.370	1,610.210	1,611.250	1,609.390	1,612.300	1,611.310	1,611.260	1,611.280	1,612.560	1,611.410
DEPTH TO G.W. (FT)	12.150	11.080	10.520	11.170	13.850	12.830	13.750	12.700	14.320	9.950	12.360	10.150	13.300	8.470	12.140	8.180	11.670	9.790	12.530	11.630	11.120	5.950	8.420	11.210	7.720	8.150	9.700	9.930	3.880	5.050	7.220	8.380	7.340	9.200	6.290	7.280	7.330	7.310	6.030	7.180
TBA (µg/L)	QN	QN	QN	QN	DN	ΔN	DN	DN	ΩN	DN	DN	DN	ND<25	ND<50	ND<25	ND<25	ND<25	ND<25	ND<25		NA	ΝA	AN	NA	NA	AN	AN	NA	NA	AN	NA	NA	AN	QN	1,650.0	DN	ND	ND	QN	QN
TAME (µg/L)	QN	QN	QN	QN	QN	Q	Q	DN	DN	ΠN	DN	Q	ND<2.5		ND<2.5	ND<2.5	ND<2.5	-		ND<2.5	AN	AN	AN	NA	NA	AN	AN	AN	NA	AN	NA	AN	AN	Q	DN	Q	QN	DN	QN	a
DIPE (Jug/L)	QN	QN	QN	QN	Q	QN	g	QN	Q	DN	DN	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	 ΝA	AN	NA	NA	NA	NA	NA	g	Q	Q	DN	DN	QN	Q						
ETBE (µg/L)	αN	QN	QN	Q	g	g	QN	Q	Q	ND	DN	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5		ND<2.5		NA	AN	AN	NA	NA	AN	AN	AN	NA	NA	NA	AN	AN	g	av	QN	QN	DN	QN	QN
MTBE (µg/L)	QN	QN	QN	QN	QN	ND	DN	QN	QN	DN	DN	DN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	DN	6.0	gN	DN	DN	QN	QN	DN	QN	QN	QN	QN	QN	DN	DN	QN	DN	DN	ND	g
XYLENES (µg/L)	QN	2.5	an	a	ND<0.5	ND<1.0	2.8	ND<0.5	4.0	ND<0.5	ND<0.5	ND<0.5	338.0	408.0	1,099.0	1,833.0	153.0	626.0	1,926.0	1,444.0	20.0	270.0	1,166.0	2,229.0	117.9	1,330.0	11,700.0	354.0	3,670.0	2.8J	207.0	275.0								
ETHYL- BENZENE (µg/L)	QN	ΔN	QN	2.0	QN	an	3.0>DN	ND<1.0	1.4	ND<0.5	3.6	ND<0.5	ND<0.5	ND<0.5	QN	45.0	228.0	2.0	8.0	264.0	953.0	376.0	QN	246.0	433.0	610.1	23.3	308.0	1,830.0	60.8	952.0	3.5J	40.7	100.0						
TOLUENE (µg/L)	QN	DN	DN	QN	ND	DN	QN	QN	QN	1.0	QN	QN	ND<0.5	ND<1.0	0.7	ND<0.5	2.6	ND<0.5	ND<0.5	ND<0.5	3.0	340.0	1,403.0	1,768.0	240.0	1,038.0	3,807.0	7,465.0	33.0	859.0	2,630.0	6,555.5	99.1	156.0	20,300.0	73.7	574.0	1.8J	106.0	212.0
BENZENE (µg/L)	QN	QN	QN	QN	QN	DN	DN	DN	DN	DN	DN	QN	ND<0.5	ND<1.0	0.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	27.0	61.0	1,214.0	1,828.0	455.0	714.0	3,037.0	3,939.0	12.0	711.0	1,424.0	3,474,4	107.3	1,930.0	18,000.0	435.0	3,430.0	267.0	9.5	200.0
TPH AS DIESEL (µg/L)	AA	AN	AN	NA	NA	NA	NA	NA	AN	NA	AN	AN	NA	AN	AA	NA	AN	NA	NA	AN	AN	AN	AN	NA	AN	QN	AN	AN	NA	NA										
TPH AS GASOLINE (µg/L)	QN	QN	QN	DN	QN	ND<100	ND<200	ND<100	ND<100	ND<100	ND<100	ND<100	ND<100	947.0	3,161.0	11,051.0	22,790.0	2,067.0	8,684.0	23,912.0	18,047.0	467.0	4,565.0	13,966.0	25,931.0	2.219.0	9,300.0	101.000.0	2.030.0	16,500.0	564.0	1,120.0	2,640.0							
DATE SAMPLED	09/24/13	12/11/13	03/07/14	05/09/14	11/17/14	07/02/15	10/21/15	06/27/16	01/23/17	06/13/17	10/25/17	05/09/18	11/30/18	06/05/19	11/06/19	06/22/20	12/14/20	05/20/21	11/04/21	06/30/22	01/08/03	04/16/03	07/14/03	10/14/03	03/05/04	05/13/04	07/28/04	10/26/04	01/25/05	05/13/05	07/21/05	10/04/05	01/04/06	12/08/06	03/15/07	06/08/07	20/20/60	12/14/07	03/28/08	05/23/08
SAMPLE SOURCE																					MW-4													**						

** first sampling event conducted by AI, data prior to this date was generated by EAR • Not Analyzed for this Contaminant ** not analyzed as well was destroyed in soil excavation 03/2008.

** first sampling event conducted by AI, data prior to this date was generated by EAR * Not Analyzed for this Contaminant * not analyzed as well was destroyed in soil excavation 03/2008. *** Not analyzed as car was parked over the monitoring well.

G.W. ELEVATION (FT - AMSL)	1,607.300	1,612.550	1,609.950	1,607.200	1,610.840	1,610.430	1,608.850	1,608.450	1,614.750	1,613.290	1,611.130	1,610.030	1,610.790	1,609.390	1,611.240	1,611.160	1,611.040	1,611.050	1,612.460	1,611.300	1,607.450	1,610.170	1,611.850	1,610.710	1,608.740	1,608.150	1,611.470	1,610.750	1,607.490	1,607.700	1,613.750	1,611.700	1,608.750	1,608.110	1,610.450	1,610.090	1,607.670	1,607.500	1,611.450	1,610.500	1,607.850
DEPTH TO G.W. (FT)	9.950	4.700	7.300	10.050	6.410	6.820	8.400	8.800	2.500	3.960	6.120	7.220	6.460	7.860	6.010	6.090	6.210	6.200	4.790	5.950	9.800	7.080	5.400	6.540	8.510	9.100	5.780	6.500	9.760	9.550	3.500	5.550	8.500	9.140	6.800	7.160	9.580	9.750	5.800	6.750	9.400
TBA (µg/L)	NA	AN	NA	NA	NA	AN	AN	NA	NA	NA	NA	NA	AN	QN	QN	QN	QN	QN	ND	QN	QN	Q	DN	QN	ND	DN	DN	DN	DN	ND	QN	QN	ΟN	Q	Q	QN	NA	DN	ND	ND	DN
TAME (µg/L)	AN	AN	NA	NA	NA	AN	AA	AN	NA	AN	AN	٨N	AN	Q	QN	QN	QN	QN	QN	QN	DN	Q	QN	QN	DN	DN	QN	DN	۵N		an	DN	QN	QN	QN	QN	AN	DN	ND	DN	QN
DIPE (Jug/L)	ΡN	AN	NA	NA	NA	NA	NA	AN	NA	NA	NA	NA	AN	Q	QN	QN	gN	ΩN	QN	QN	QN	gN	QN	DN	ND	DD	ND	DN	DN	ND	ND	DN	ΩN	QN	QN	DN	AN	ND	ND	ND	DN
ETBE (µg/L)	AN	AN	NA	NA	NA	NA	NA	NA	AN	NA	NA	AN	AN	g	QN	QN	gN	QN	QN	QN	QN	Q	QN	QN	DN	QN	QN	QN	ΔN	ND	an	QN	QN	g	QN	Q	AN	DN	DN	DN	DN
MTBE (µg/L)	291.0	122.0	171.0	158.0	66.0	627.0	ND	66.0	20.0	627.0	89.0	162.2	54.2	37.5	15.1	36.5	59.8	43.6	33.0	14.2	40.2	4	QN	7.2	13.9	DN	2.3	4.5	19.1	3.6	11.3	7.4	16.1	QN	QN	QN	QN	QN	DN	ND	QN
XYLENES (µg/L)	2,203.0	287.0	990.0	996.0	34.0	432.0	1,870.0	89.0	QN	432.0	117.0	333.7	17.2	468.0	QN	309.0	1,270.0	1.1J	78.3	33.4	2,280.0	535.0	123.0	1,440.0	1,480.0	1,010.0	17.5	547.0	548.0	46.2	QN	744.0	1,560.0	614.0	27.1	QN	3,630.0	13.2	QN	ND	317.0
ETHYL- BENZENE (µg/L)	26.0	DN	146.0	55.0	DN	138.0	4,363.0	8.0	QN	138.0	52.0	172.3	1.5	80.8	ΩN	101.0	424.0	QN	3.2	9.8	493.0	86.4	÷	286.0	339.0	154.0	2.4	132.0	149.0	22.0	QN	161.0	502.0	194.0	61.3	QN	1,450.0	۵N	an	DN	23.4
TOLUENE (µg/L)	2,935.0	163.0	1,033.0	860.0	19.0	805.0	5,546.0	227.0	DN	805.0	193.0	485.0	8.6	387.0	0.5J	438.0	2,780.0	L7.0	34.9	34.5	1,330.0	272.0	5.3	107.0	796.0	110.0	DN	68.9	269.0	26.3	DN	74.4	506.0	73.2	1.4	QN	218.0	4,1	QN	QN	34.7
BENZENE (µg/L)	2,581.0	235.0	1,740.0	3,707.0	399.0	1,407.0	160.0	330.0	13.0	1,407.0	536.0	2,041.5	30.0	1,230.0	3.1	744.0	4,300.0	4.0	28.3	103.0	2,500.0	422.0	164.0	1,280.0	2,360.0	2,530.0	17.1	421.0	2,030.0	180.0	3.7	1,020.0	4,160.0	1,060.0	551.0	1.3	11,300.0	255.0	ND	0.9	2,700.0
TPH AS DIESEL (µg/L)	NA	NA	NA	NA	AN	AA	NA	NA	AN	NA	AN	AN	AN	AN	ΑN	QN	NA	AN	AN	AN	AN	AN	NA	AN	NA	AN	AN	NA	NA	NA	NA	NA	AN	NA	AN	AN	AN	AN	NA	NA	NA
TPH AS GASOLINE (µg/L)	12,158.0	2,757.0	9,252.0	25,327.0	1,185.0	7,233.0	26,511.0	1,666.0	DN	7,233.0	3,185.0	8,789.0	535.0	4,020.0	QN	2,340.0	14,500.0	72.6	973.0	595.0	18,700.0	2,440.0	497.0	5,570.0	11,800.0	8,950.0	134.0	3,040.0	4,010.0	1,100.0	DN	6,890.0	17,200.0	3,970.0	967.0	QN	23,900.0	735.0	QN	QN	3,970.0
DATE SAMPLED	01/08/03	04/16/03	07/14/03	10/14/03	03/05/04	05/13/04	07/28/04	10/26/04	01/25/05	05/13/05	07/21/05	10/04/05	01/04/06	12/08/06	03/15/07	06/08/07	20/20/60	12/14/07	03/28/08	05/23/08	08/26/08	01/06/09	03/13/09	06/11/09	60/03/06	12/08/09	02/18/10	05/19/10	09/29/10	12/16/10	03/17/11	06/17/11	09/13/11	11/11/1	02/10/12	05/15/12	08/24/12	12/10/12	02/28/13	05/09/13	09/24/13
SAMPLE SOURCE	MW-5													**																											

** first sampling event conducted by AI, data prior to this date was generated by EAR * Not Analyzed for this Contaminant *** not analyzed as well was destroyed in soil excavation 03/2008. **** Not analyzed as car was parked over the monitoring well.

G.W. ELEVATION (FT - AMSL)	1,607.670	1,608.850	1,608.800	1,608.080	1,607.230	1,606.260	1,607.340	1,605.770	1,609.940	1,607.430	1,607.330	1,605.860	1,611.400	1,629.940	1,634.140					1,607.170	1,612.330	1,609.540	1,606.840	1,610.500	1,610.030	1,608.440	1,608.360	1,614.160	1,613.000	1,610.740	1,609.740	1,610.990	1,610.940	1,610.940	1,610.825	1,610.690	1,610.700	1,612.160	1,610.960	1,607.840
DEPTH TO G.W. (FT)	9.580	8.400	8.450	11.170	10.020	10.990	9.910	11.480	7.310	9.820	9.920	11.390	5.850	9.690	5.490	MN	ΜN	MN	NN	9.570	4.410	7.200	006.6	6.240	6.710	8.300	8.380	2.580	3.740	6.000	7.000	5.750	7.300	5.800	5.915	6.050	6.040	4.580	5.780	8.900
TBA (µg/L)	QN	ND	QN	ΔN	ND	QN	DN	ND	QN	QN	ND	ND<25	ND<50	ND<25	ND<25	NS	NS	NS	ND<25	AN	AN	AN	AN	NA	AN	NA	ΥN	٧N	NA	AN	NA	NA	QN	QN	QN	QN	ND	ND	ND	QN
TAME (µg/L)	QN	QN	DN	an	DN	ΩN	DN	QN	an	DN	ND	ND<2.5	ND<5	ND<2.5		NS	NS	NS	ND<2.5	NA	NA	AN	AN	NA	AN	AN	AN	AN	NA	NA	NA	AN	QN	QN	QN	QN	DN	DN	DN	QN
DIPE (Jug/L)	QN	QN	DN	DN	DN	DN	ND	ND	QN	QN	DN	ND<2.5	ND<5	ND<2.5		NS	NS	SN	ND<2.5	NA	NA	NA	NA	NA	NA	AN	NA	NA	NA	NA	NA	NA	QN	QN	DN	QN	QN	ΠN	ND	QN
ETBE (µg/L)	QN	QN	ND	DN	ND	ND	QN	QN	ΩN	QN	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	NS	NS	NS	ND<2.5	NA	NA	NA	NA	NA	NA	AN	NA	NA	NA	AN	NA	AN	QN	QN	Q	g	Q	QN	QN	QN
MTBE (µg/L)	ΔN	ND	ΠN	ND	8.1	ND<2.5	ND<5	ND<2.5	ND<2.5	NS	NS	NS	ND<2.5	DN	DN	QN	QN	ND	QN	DN	DN	DN	DN	QN	DN	QN														
XYLENES (µg/L)	142.0	92.1	150.0	6,450.0	504.0	386.0	163.0	131.7	124.0	8.2	60.9	2,497.0	1,618.6	157.8	465.9	NS	NS	NS	ND<0.5	 QN	QN	QN	QN	ND	QN	DN	QN	QN	ΔN	۵N	Q	QN	3.1	QN	gn	QN	QN	DN	ΩN	Q
ETHYL- BENZENE (µg/L)	89.0	186.0	100.0	624.0	126.0	211.0	45.2	19.4	83.6	60.3	63.3	ND<0.5	289.0	222.0	2'0>QN	NS	SN	NS	ND<0.5	ΩN	an	QN	QN	DN	QN	QN	ΩN	QN	an	ΩN	QN	DN	DN	DN	DN	DN	ND	DN	an	QN
TOLUENE (µg/L)	80.6	56.2	ND	489.0	20.8	52.7	24.6	28.0	6.3	6.2	17.3	433.0	26.7	27.9	24.0	NS	NS	NS	ND<0.5	DN	DN	DN	QN	DN	QN	1.1	QN	QN	QN	DN	DN	an	QN							
BENZENE (µg/L)	1,550.0	3,700.0	2,830.0	8,270.0	886.0	1,360.0	250.0	29.7	290.0	289.0	473.0	3,690.0	1,430.0	1,270.0	934.0	NS	NS	NS	ND<0.5	QN	QN	QN	QN	ND	DN	QN	DN	gN	an	QN	QN	DN	3.0	QN						
TPH AS DIESEL (µg/L)	AN	NA	NA	AN	NA	AN	NA	NA	NA	AN	NA	AN	AN	AN	AN	SN	NS	SN	NA	NA	AN	AN	AN	NA	AN	NA	NA	AN	AN	AN	NA	AN	NA	NA	DN	NA	NA	NA	NA	NA
TPH AS GASOLINE (µg/L)	3,520.0	9,990.0	2,960.0	35,600.0	4,280.0	4,060.0	1,340.0	1,000.0	950.0	910.0	1,800.0	14,400.0	6,100.0	3,650.0	2,630.0	NS	NS	NS	ND<100	QN	QN	g	QN	QN	QN	QN	QN	Q	gN	Q	DN	QN	DN	DN						
DATE SAMPLED	12/11/13	03/07/14	05/09/14	11/17/14	07/02/15	10/21/15	06/27/16	01/23/17	06/13/17	10/25/17	05/09/18	11/30/18	06/05/19	11/06/19	06/22/20	12/14/20	05/20/21	11/04/21	06/30/22	01/08/03	04/16/03	07/14/03	10/14/03	03/05/04	05/13/04	07/28/04	10/26/04	01/25/05	05/13/05	07/21/05	10/04/05	01/04/06	12/08/06	03/15/07	06/08/07	70/0/60	12/14/07	03/28/08	05/23/08	08/26/08
SAMPLE SOURCE																				- MW-6													**							

** first sampling event conducted by AI, data prior to this date was generated by EAR
 * Not Analyzed for this Contaminant
 ** not analyzed as well was destroyed in soil excavation 03/2008.
 *** Not analyzed as car was parked over the monitoring well.

TABULATED GROUNDWATER SAMPLE ANALYTICAL RESULTS MOBIL BALDWIN
--

G.W. ELEVATION (FT - AMSL)	1,609.920	1,611.540	1,610.300	1,608.340	1,607.840	1,613.070	1,610.380	1,607.020	1,607.320	1,613.260	1,611.300	1,611.440	1,607.820	1,610.090	1,608.940	1,607.270	1,607.060	1,610.130	1,610.060	1,607.410	1,606.800	1,608.360	1,608.350	1,605.700	1,606.690	1,605.720	1,606.790	1,605.240	1,609.280	1,606.790	1,607.610	1,605.340	1,610.740	1,629.350	1,633.540	1,629.900	1,631.740	1,629.030	1,629.920	1 606 460	221-222
DEPTH TO G.W. E (FT) (6.820	5.200	6.440	8.400	8.900	3.670	6.360	9.720	9.420	3.480	5.440	5.300	8.920	6.650	7.800	9.470	9.680	6.610	6.680	9.330	9.940	8.380	8.390	11.040	10.050	11.020	9.950	11.500	7.460	9.950	9.130	11.400	6.000	9.740	5.550	9.190	7.330	10.060	9.170	R 480	
TBA (µg/L)	QN	an	ND	DN	QN	az	Q	DN	DN	DN	DN	QN	QN	QN	QN	NA	QN	an	QN	QN	QN	Q	QN	QN	QN	ND	DN	DN	DN	DN	DN	ND<25	ND<50	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	VIV	
TAME (µg/L)	QN	DN	DN	ND	DN	g	g	QN	QN	DN	DN	QN	QN	g	QN	NA	QN	QN	QN	Q	QN	QN	QN	QN	QN	ND	ND	QN	ND	DN	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5		ND<2.5	VIV	
DIPE (µg/L)	QN	QN	DN	DN	DN	Q	Q	QN	QN	QN	QN	QN	Q	Q	Q	AN	QN	DN	ND	DN	DN	QN	QN	ND<2.5	ND<5			ND<2.5	ND<2.5	ND<2.5		VIV									
ETBE (µg/L)	QN	QN	ND	ND	DN	g	QN	QN	QN	DN	QN	QN	QN	Q	QN	NA	DN	QN	QN	DN	DN	DN	QN	DN	ND	ND	ND	DN	ND	ND	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	NIA	Ş
MTBE (µg/L)	QN	DN	DN	DN	QN	Q	Q	DN	QN	DN	DN	QN	Q	QN	QN	QN	QN	QN	Q	DN	QN	DN	QN	QN	QN	DN	ND	QN	ND	ND	ND	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ر م	2,0
(hg/L) (hg/L)	ΟN	QN	DN	50.8	QN	QN	QN	QN	QN	QN	DN	QN	Q	DN	DN	DN	QN	QN	ΔN	5.3	QN	DN	QN	10.4	ND<1.0	1.0	2.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5	Q	אר								
ETHYL- BENZENE (µg/L)	QN	DN	DN	13.4	DN	DN	QN	DN	QN	QN	ΩN	QN	QN	QN	DN	ND	QN	DN	QN	Q	QN	QN	1.4	ND<1.0	1.0	1.1	1.4	ND<0.5	ND<0.5	ND<0.5	Ç	אר									
TOLUENE (µg/L)	QN	QN	DN	29.9	QN	DN	QN	Q	QN	QN	ΔN	QN	QN	QN	QN	QN	DN	DN	QN	QN	QN	QN	ΩN	QN	QN	QN	an	4.5	QZ	Q	QN	10.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5		NC
BENZENE (µg/L)	QN	QN	DN	10.2	Q	QN	6.2	QN	DN	DN	QN	DN	QN	DN	4.9	ND<1.0	1.2	2.3	2.1	ND<0.5	ND<0.5	ND<0.5	C,	NL NL																	
TPH AS DIESEL (µg/L)	AN	AN	AN	NA	AN	AN	AN	NA	NA	NA	AN	AN	NA	AN	AN	NA	AN	AN	AN	NA	NA				NA			NA	NA	V 14	NA										
TPH AS GASOLINE (µg/L)	QN	DN	QN	308.0	QN	QN	QN	DN	DN	QN	QN	QZ	gn	QN	254.0	QN	QN	QN	Q	QN	QN	QN	DN	ND<100	ND<200	ND<100	ND<100	ND<100	ND<100	ND<100	ND<100	4									
DATE SAMPLED	01/06/09	03/13/09	06/11/09	60/03/00	12/08/09	02/18/10	02/19/10	09/29/10	12/16/10	03/17/11	06/17/11	09/13/11	11/11/11	02/10/12	05/15/12	08/24/12	12/10/12	02/28/13	05/09/13	09/24/13	12/11/13	03/07/14	05/09/14	11/17/14	07/02/15	10/21/15	06/27/16	01/23/17	06/13/17	10/25/17	05/09/18	11/30/18	06/05/19	11/06/19	06/22/20	12/14/20	05/20/21	11/04/21	06/30/22	00100170	01/08/03
SAMPLE SOURCE					·																																				NVV-/

** first sampling event conducted by AI, data prior to this date was generated by EAR • Not Analyzed for this Contaminant *** not analyzed as well was destroyed in soil excavation 03/2008.

G.W. ELEVATION (FT - AMSL.)	1,612.220	1,608.290	1,605.840	1,609.730	1,608.720	1,607.200	1,608.510	1,613.020	1,612.640	1,610.910	1,609.210	1,610.720	1,607.220	1,610.930	1,610.185	1,609.990	1,609.990	1,611.460	1,610.450	1.607.040	1,608.620	1,610.680	1,609.350	1,607.250	1,607.630	1,611.310	1,609.340	1,605.900	1,606.690	1,612.480	1,610.350	1,608.040	1,607.180	1,609.530	1,608.780	1,606.020	1,606.300	1,609.330	1,608.920	1,605.130	1,606.280
DEPTH TO G.W. (FT)	2.720	6.650	9.100	5.210	6.220	7.740	6.430	1.920	2.300	4.030	5.730	4.220	7.720	4.310	4.755	4.950	4.950	3.480	4,490	7,900	6.320	4.260	5.590	7.690	7.310	3.630	5.600	9.040	8.250	2.460	4.590	6.900	7.760	5.410	6.160	8.920	8.640	5.610	6.020	9.810	8.660
TBA (µg/L)	AN	AN	NA	QN	g	QN	DN	QN	DN	QN	ND	QN	QN	QN	NA	ΩN	DN	ND	QN	QN																					
TAME (µg/L)	AN	NA	AN	AN	NA	NA	QN	0N N	QN	QN	QN	QN	QN	dN	DN	DN	Q	QN	Q	DN	DN	QN	Q	AN	QN	QN	QN	QN	Q												
DIPE (µg/L)	AN	AN	NA	NA	AN	NA	NA	NA	AN	AN	NA	NA	DN	DN	DN	QN	QN	QN	Q	QN	Q	g	Q	Q	QN	Q	QN	QN	DN	DN	QN	QN	QN	Q	Q	AN	Q	Q	QN	QN	QN
ETBE (µg/L)	AN	AN	NA	NA	NA	NA	NA	NA	AN	AN	NA	AN	Q	QN	DD	QN	QN	QN	Q	Q	Q	g	QN	g	QN	QN	DN	DN	DN	DN	QN	QN	QN	Q	QN	AN	g	QN	QN	QN	Q L
MTBE (µg/L)	QN	aN	5.0	ND	DN	DN	QN	DN	DN	DN	ΔN	QN	Q	QN	QN	QN	QN	QN	QN	4 8	QN	Q	6.0	8.8	QN	DN	6.4	12.4	9.4	Q	6.9	5.7	3.4	QN	QN	QN	2.2	QN	2.1	11.6	12.6
XYLENES (µg/L)	QN	QN	QN	DN	an	DN	an	QN	QN	QN	QN	an	QZ	QN	QN	QN	QN	QN	QN	CN	Q	QN	QN	54.0	QN	QN	Q	g	QZ	gN	QN	QN	QN	QN	QN	gn	gy	QN	Ŋ	DN	
ETHYL- BENZENE (µg/L)	ΩN	DN	DN	QN	QN	QN	QN	DN	QN	QN	QN	ND	QN	DN	DN	QN	QN	QN	QN	GN	QN	QN	Q	13.1	QN	QN	QN	QZ	QN	DN	DN	QN	QN	QN	QN	QN	DN	DN	QN	DN	DN
TOLUENE (µg/L)	QN	DN	DN	ND	DN	ND	DN	DN	DN	QN	DN	QN	QN	QN	DN	QN	28.3	ΩN	DN	QN	QN	QN	QN	QN	DN	QN	QN	QN	QN	QN	QN	DN	QN	QN							
BENZENE (µg/L)	QN	QN	QN	DN	QN	DN	QN	QN	DN	QN	QN	Q	QN	QN	QN	DN	QN	DN	QN	QN	QN	Q	QN	8.5	DN	QN	QN	QN	DN	DN	QN	DN									
TPH AS DIESEL (µg/L)	AN	AN	AN	AN	AN	AN	NA	NA	NA	NA	ΨN	AN	AN	NA	QN	NA	AN	AN	AN	NA	AN	NA	NA	NA	NA	NA	NA														
TPH AS GASOLINE (µg/L)	DN	QN	gN	g	QN	QN	DN	DN	DN	QN	QN	QN	QN	DN	DN	DN	QN	QN	GN			QN	QN N	364.0	QN	DN	DN	QN	QN	QN	DN	QN	DN	DN	QZ	QN	QN	QN	DN	QN	QN
DATE SAMPLED	04/16/03	07/14/03	10/14/03	03/05/04	05/13/04	07/28/04	10/26/04	01/25/05	05/13/05	07/21/05	10/04/05	01/04/06	12/08/06	03/15/07	06/08/07	20/20/60	12/14/07	03/28/08	05/23/08	08/26/08	01/06/09	03/13/09	06/11/09	60/03/09	12/08/09	02/18/10	05/19/10	09/29/10	12/16/10	03/17/11	06/17/11	09/13/11	11/11/11	02/10/12	05/15/12	08/24/12	12/10/12	02/28/13	05/09/13	09/24/13	12/11/13
SAMPLE SOURCE													**																												

** first sampling event conducted by AI, data prior to this date was generated by EAR * Not Analyzed for this Contaminant *** not analyzed as well was destroyed in soil excavation 03/2008. **** Not analyzed as car was parked over the monitoring well.

ABULATED GROUNDWATER SAMPLE ANALYTICAL RESULTS MOBIL BALDWIN

G.W. ELEVATION (FT - AMSL)	1,607.590	1,607.090	1,605.640	1,605.230	1,604.290	1,605.130	1,603.840	1,607.390	1,605.010	1,605.640	1,603.890	1,608.660	1,627.660	1,631.850					1,610.630	1,610.630	1,609.030	1,609.410	1,613.980	1,612.650	1,611.730	1,610.550	1,611.630	1,611.250	1,611.720	1,611.710	1,611.610	1,611.620	1,612.830	1,611.690	1,608.610	1,610.730	1,612.090	1,611.140	1,609.250	1,608.770	
DEPTH TO G.W. (FT)	7.350	7.850	9.300	9.710	10.650	9.810	11.100	7.550	9.930	9.300	11.050	6.280	9.650	5.460	MN	ΜN	MN	MN	 6.900	6.900	8.500	8.120	3.550	4.880	5.800	6.980	5.900	6.280	5.810	5.820	5.920	5.910	4.700	5.840	8.920	6.800	5.440	6.390	8.280	8.760	
TBA (µg/L)	ND	ND	ND	ND	ND	ND	QN	QN	QN	QN	ND<25	ND<50	ND<25	ND<25	NS	NS	NS	ND<25	AA	AA	AN	NA	AN	NA	NA	NA	NA	DN	QN	QN	QN	QN	QN	QN	ND	ND	QN	DN	DN	QN	
TAME (µg/L)	DN	DN	DN	ND	ND	ND	DN	QN	DN	ΠN	ND<2.5		ND<2.5			NS	NS	ND<2.5	AN	NA	ND	ND	QN	DN	an	QN															
DIPE (µg/L)	ΩN	ND	ND	ND	ND	an	QN	QN	QN	QN	ND<2.5	ND<5	ND<2.5	ND<2.5		NS	NS	ND<2.5	AN	AN	AN	AN	NA	AA	AN	AN	NA	DN	DN	QN	QN	QN	QN	QN	QN	Q	QN	DN	QN	DN	-
ETBE (µg/L)	ΠD	DN	ND	ND	DN	DN	QN	QN	Q	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	NS	NS	NS	ND<2.5	AN	AN	AN	NA	AN	NA	NA	AN	NA	QN	ND	QN	ΩN	QN	QN	Q	QN	QN	DN	ND	ND	QN	
MTBE (µg/L)	2.2	9.2	19.0	25.0	19.0	19.0	QN	13.1	36.2	DN	ND<2.5	18.9	20.8	ND<2.5	NS	NS	NS	ND<2.5	QN	Q	g	QN	QN	QN	QN	g	DN	DN	ND	QN	DN	QN	QN	Q	QN	QN	QN	DN	ND	DN	
XYLENES (µg/L)	DN	ND	DN	DN	ND	DN	QN	Q	2.2	QN	2.0	ND<1.0	ND<0.5	1.5	NS	SN	NS	ND<0.5	QN	QN	Q	QN	QN	an	QN	an	۵N	QN	DN	QN	97.7	QN									
ETHYL- BENZENE (µg/L)		DN	DN	DN	ND	۵N	QN	Q	0.6	Q	ND<0.5	ND<1.0	0.7	0.6	NS	NS	NS	ND<0.5	QN	QN	Q	gy	QN	QN	Q	QN	QN	QN	DN	DN	QN	QN	QN	QN	DN	DN	QN	QN	23.4	DN	
TOLUENE (µg/L)	QN	DN	DN	DN	DN	DN	QN	QN	QN	QN	ND<0.5	ND<1.0	ND<0.5	ND<0.5	NS	NS	NS	ND<0.5	QN	QN	QN	QN	ΔN	ΔN	ΔN	DN	DN	QN	ND	DN	DN	QN	DN	QN	QN	QN	QN	QN	56.1	QN	
BENZENE (µg/L)	DN	ΟN	DN	ND	DN	QN	ΩN	1.8	QN	QN	<u>,</u> ,	ND<1.0	ND<0.5	0.7	NS	NS	SN	ND<0.5	QN	DN	gn	gN	QN	DN	DN	QN	Q	QN	QN	QN	ND	QN	QN	QN	DN	QN	ND	DN	32.9	DN	
TPH AS DIESEL (µg/L)	NA	NA	NA	NA	NA	AN	AN	NA	AN	AN	AN	AN	AN	AN	NS	NS	NS	NA	AN	AN	AN	NA	AN	AN	AN	NA	AN	NA	NA	QN	NA	NA	AN	AN	AN	AN	NA	NA	NA	NA	
TPH AS GASOLINE (µg/L)	DN	DN	ND	DN	DN	QN	QN	QN	DN	QN	ND<100	ND<200	ND<100	ND<100	NS	NS	NS	ND<100	 QN	g	QN	Q	gN	QN	QN	QN	QN	92.8	DN	QN	DN	QN	QN	QN	QN	QZ	QN	DN	646.0	QN	
DATE SAMPLED	03/07/14	05/09/14	11/17/14	07/02/15	10/21/15	06/27/16	01/23/17	06/13/17	10/25/17	05/09/18	11/30/18	06/05/19	11/06/19	06/22/20	12/14/20	05/20/21	11/04/21	06/30/22	03/05/04	05/13/04	07/28/04	10/26/04	01/25/05	05/13/05	07/21/05	10/04/05	01/04/06	12/08/06	03/15/07	06/08/07	20/20/60	12/14/07	03/28/08	05/23/08	08/26/08	01/06/09	03/13/09	06/11/09	60/00/60	12/08/09	
SAMPLE SOURCE																			MW-8									**													

** first sampling event conducted by AI, data prior to this date was generated by EAR * Not Analyzed for this Contaminant * not analyzed as well was destroyed in soil excavation 03/2008. **** Not analyzed as car was parked over the monitoring well.

ABULATED GROUNDWATER SAMPLE ANALYTICAL RESULTS	
--	--

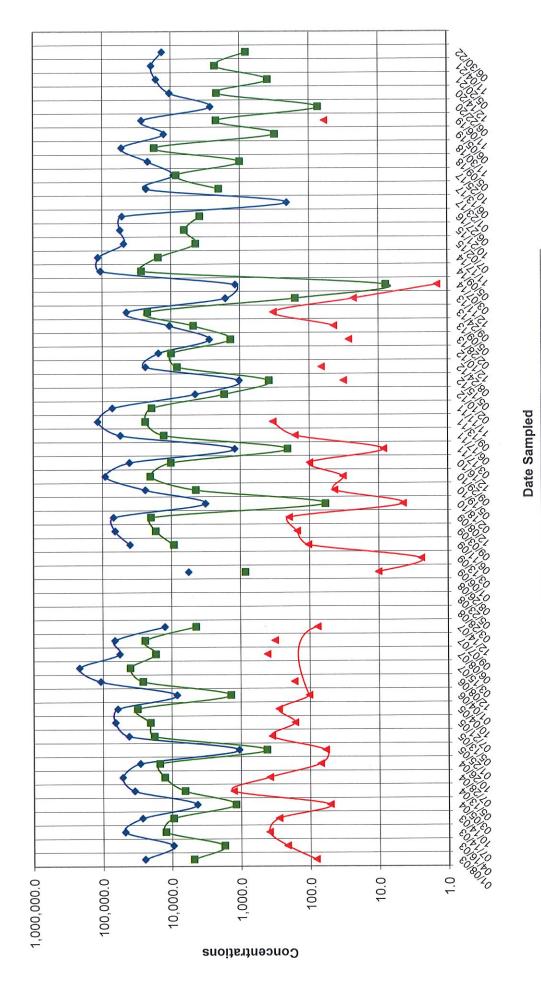
G.W. ELEVATION (FT - AMSL)	1,613.580	1,611.010	1,607.820	1,608.130	1,613.770	1,611.950	1,608.130	1,608.610	1,610.860	1,609.730	1,608.150	1,607.910	1,609.870	1,610.810	1,608.130	1,608.140	1,609.430	1,609.070	1,606.530	1,607.410	1,606.500	1,607.430	1,605.830	1,609.960	1,607.680	1,608.630	1,606.150	1,611.280	1,630.300	1,634.020	1,630.790	1,632.560	1,629.970	1,630.770	1,612.512	1,610.632	1,609.592	1,609.472	1,612.362	1,612.432
DEPTH TO G.W. (FT)	3.950	6.520	9.710	9.400	3.760	5.580	9.400	8.920	6.670	7.800	9.380	9.620	7.660	6.720	9.400	9.390	8.100	8.460	11.000	10.120	11.030	10.100	11.700	7.570	9.850	8.900	11.380	6.250	9.590	5.870	9.100	7.330	9.920	9.120	7.500	9.380	10.420	10.540	7.650	7.580
TBA (µg/L)	QN	DN	QN	NA	QN	DN	QN	DN	QN	QN	Q	QN	QN	ND<25	ND<50	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	αN	QN	NA	ΩN	QN	DN													
TAME (µg/L)	QN	DN	QN	Q	Q	Q	QN	QN	QN	a	AN	QN	Q	QN	QN	Q	QN	QN	DN	QN	ΩN	ΔN	QN	an	DN	QN	ND<2.5		ND<2.5		ND<2.5	ND<2.5	ND<2.5	ND<2.5	QN	QN	NA	QN	ND	QN
DIPE (µg/L)	QN	QN	g	Q	QN	QN	QN	QN	Q	Q	AN	DN	DN	QN	QN	QN	QN	g	QN	QN	ΩN	QN	QN	QN	DN	DN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5		ND<2.5		QN	QN	NA	ΠN	ND	Q
ETBE (µg/L)	QN	QN	Q	g	Q	QN	QN	QN	Q	QN	AA	QN	DN	QN	DN	Q	Q	Q	QN	QN	QN	QN	Q	Q	QN	QN	ND<2.5	ND<5			ND<2.5	ND<2.5	ND<2.5	ND<2.5	Q	g	NA	QN	QN	Q
MTBE (µg/L)	QN	QN	QN	QN	QN	Q	QN	QN	Q	QN	Q	QN	DN	DN	QN	QN	QN	Q	QN	Q	QN	QN	QN	QN	Q	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	QN	QN	ND	DN	ND	QN
XYLENES (µg/L)	QN	QN	Q	QN	Q	Q	QN	Q	g	Q	a	QN	QN	QN	QN	Q	QN	QN	QN	ΩN	QN	QN	QN	QN	Q	g	ND<0.5	ND<1.0	ND<0.5	1.4	ND<0.5	ND<0.5	ND<0.5	ND<0.5	14,300.0	18.7	16,400.0	7,530.0	23.4	4,010.0
ETHYL- BENZENE (µg/L)	DN	Q	QN	۵z	QN	QN	QN	Q	Q	QN	QN	Q	QN	Q	QN	QN	QN	DN	gN	ΩN	QN	ΩN	QN	QN	DN	DN	ND<0.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	2,530.0	QN	2,550.0	1,420.0	QN	1,060.0
TOLUENE (µg/L)	DN	QN	Q	Q	ΩN	QN	QN	QN	QN	DN	QN	QZ	QN	QN	QN	DN	DN	DN	QN	ΔN	ΔN	QN	DN	DN	ND	DN	ND<0.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	27,800.0	QN	37,100.0	16,200.0	2.4	13,200.0
BENZENE (µg/L)	QN	Q	DN	QN	DN	QN	QN	DN	gN	QN	QN	QN	DN	DN	QN	ND<0.5	ND<1.0	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	18,000.0	1.2	34,900.0	21,000.0	366.0	14,700.0											
TPH AS DIESEL (µg/L)	NA	AN	NA	AN	NA	NA	NA	NA	NA	AN	AN	NA	NA	AN	AN	NA	NA	NA	NA	AN	AN																			
TPH AS GASOLINE (µg/L)	QN	Q	QN	DN	QN	QN	an	QN	ND<100	ND<200	ND<100	ND<100	ND<100	ND<100	ND<100	ND<100	96,500.0	302.0	111,000.0	78,500.0	866.0	48,400.0																		
DATE SAMPLED	02/18/10	05/19/10	09/29/10	12/16/10	03/17/11	06/17/11	09/13/11	11/11/11	02/10/12	05/15/12	08/24/12	12/10/12	02/28/13	05/09/13	09/24/13	12/11/13	03/07/14	05/09/14	11/17/14	07/02/15	10/21/15	06/27/16	01/23/17	06/13/17	10/25/17	05/09/18	11/30/18	06/05/19	11/06/19	06/22/20	12/14/20	05/20/21	11/04/21	06/30/22	02/22/12	05/15/12	08/24/12	12/10/12	02/28/13	05/09/13
SAMPLE SOURCE																																			0-WM					

** first sampling event conducted by AI, data prior to this date was generated by EAR • Not Analyzed for this Contaminant *** not analyzed as well was destroyed in soil excavation 03/2008. **** Not analyzed as car was parked over the monitoring well.

G.W. ELEVATION (FT - AMSL)	1,609.792	1,609.642	1,610.342	1,610.242	1,607.852	1,608.962	1,607.992								1,630.180	1,634.420	1,630.650	1,632.660	1,629.830	1,630.810	1,610.898	1,611.158	1,608.018	1,607.778	1,610.728	1,610.788	1,608.168	1,609.888	1,609.508	1,609.038	1,606.338	1,607.408		1,607.578	1,605.988	1,610.238	1,607.708	1,608.888	1,609.158	1,611.748
DEPTH TO G.W. (FT)	10.220	10.370	9.670	9.770	12.160	11.050	12.020	New TOC	New TOC	New TOC	New TOC	New TOC	New TOC	New TOC	10.610	6.370	10.140	8.130	10.960	9.980	8.860	8.600	11.740	11.980	9.030	8.970	11.590	9.870	10.250	10.720	13.420	12.350		12.180	13.770	9.520	1205.000	10.870	10.600	8.010
TBA (µg/L)	ΠD	DN	ND	DN	DN	ND	DN	ND	Q	QN	DN	DN	ND<25	ND<50	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	DN	ND	AA	ND	ND	ND	ND	ND	QN	QN	DN	QN	QN	QN	QN	DN	DN	DN	ND<25	ND<50
TAME (µg/L)	DN	QN	QN	QN	DN	ND	ND	ND	QN	Q	Q	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	QN	DN	NA	QN	DN	DN	DN	QN	DN	DN	QN	QN	QN	Q	DN	DN	QN	ΔN	ND<2.5	ND<5
DIPE (µg/L)	DN	QN	QN	QN	an	QN	ND	ND	DN	Q	Q	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	DN	QN	AN	QN	DN	DN	ND	DN	QN	QN	Q	QN	QN	g	g	Q	QN	DN		ND<5
ETBE (µg/L)	DN	QN	QN	QN	QN	ND	DN	DN	QN	QN	DN	QN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	QN	Q	ΝA	Q	QN	ND	DN	DN	DN	αN	QN	QN	QN	DN	QN	QN	QN	DN	ND<2.5	ND<5
MTBE (µg/L)	DN	DN	ΩN	QN	QN	QN	DD	ND	DN	ND	QN	DN	ND<2.5	ND<5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	QN	QN	QN	QN	ΠN	DN	DN	ND	ND	ΩN	QN	QN	QN	QN	QN	QN	DN	DN	ND<2.5	ND<5
XYLENES (µg/L)	11,800.0	6,280.0	14,500.0	21,600.0	26,300.0	99,600.0	23,700.0	23,500.0	14,740.0	15,550.0	24,500.0	33,100.0	46,300.0	19,840.0	18,500.0	40,000.0	2,205.0	13,230.0	13,020.0	20,760.0	403.0	6,950.0	1,310.0	QN	QN	QN	1,1)	206.0	1.8J	2,460.0	QN	3.7	1.4J	46.3	2.2	156.3	21.1	QN	ND<0.5	2.7
ETHYL- BENZENE (µg/L)	2,100.0	3,100.0	2,100.0	1,660.0	3,420.0	6,800.0	3,420.0	3,050.0	2,040.0	9,650.0	5,030.0	3,730.0	ND<0.5	2,590.0	2,130.0	9,470.0	650.0	1,840.0	2,770.0	3,640.0	78.7	863.0	389.0	QN	QN	QN	QN	5.2	ΔN	323.0	818.0	6 8	7.2	11.8	QN	113.0	9.3	DN	ND<0.5	0.7
TOLUENE (µg/L)	35,200.0	46,700.0	41,200.0	52,200.0	69,300.0	82,300.0	54,700.0	47,400.0	22,300.0	21,600.0	38,800.0	47,100.0	45,400.0	28,700.0	20,200.0	52,800.0	2,660.0	18,500.0	12,500.0	30,300.0	40.6	22,300.0	11,100.0	QN	DN	QN	DN	4.5	5.1	1,440.0	16.7	0.7J	QN	2.3	2.6	31.5	QN	QN	ND<0.5	ND<1.0
BENZENE (µg/L)	34,600.0	37,900.0	34,700.0	28,600.0	34,200.0	49,100.0	35,400.0	29,100.0	12,400.0	17,200.0	31,900.0	32,400.0	49,600.0	22,300.0	1,100.0	70,500.0	4,190.0	15,900.0	27,000.0	30,300.0	6.3	17,400.0	5,630.0	DN	QN	QN	5.4	1.2	3.5	955.0	38.3	1.0	1.5	3.9	QN	13.0	6.8	DN	ND<0.5	0.6
TPH AS DIESEL (µg/L)	٩N	AN	NA	AN	AN	AN	NA	AN	NA	NA	NA	AN	AN	AN	NA	AN	NA	NA	AN	AN	AN	NA	NA	AN	NA	AN	AN	NA	AN	NA	NA	NA	NA							
TPH AS GASOLINE (µg/L)	137,000.0	179,000.0	173,000.0	132,000.0	194,000.0	277,000.0	145,000.0	169,000.0	69,900.0	84,900.0	182,000.0	161,000.0	89,100.0	148,000.0	177,000.0	49.700.0	13,700.0	68,100.0	73,700.0	77.800.0	2,650.0	61,300.0	10,400.0	QN	QN	QN	QN	577.0	QN	10.700.0	6.650.0	105.0	138.0	155.0	QN	QN	QN	QN	ND<100	ND<200
DATE SAMPLED	09/24/13	12/11/13	03/07/14	05/09/14	11/17/14	07/02/15	10/21/15	06/27/16	01/23/17	06/13/17	10/25/17	05/09/18	11/30/18	06/05/19	11/06/19	06/22/20	12/14/20	05/20/21	11/04/21	06/30/22	02/22/12	05/15/12	08/24/12	12/10/12	02/28/13	05/09/13	09/24/13	12/11/13	03/07/14	05/09/14	11/17/14	07/02/15	10/21/15	06/27/16	01/23/17	06/13/17	10/25/17	05/09/18	11/30/18	06/05/19
SAMPLE SOURCE																					MVV-10																			

** first sampling event conducted by AI, data prior to this date was generated by EAR • Not Analyzed for this Contaminant *** not analyzed as well was destroyed in soil excavation 03/2008. **** Not analyzed as car was parked over the monitoring well.

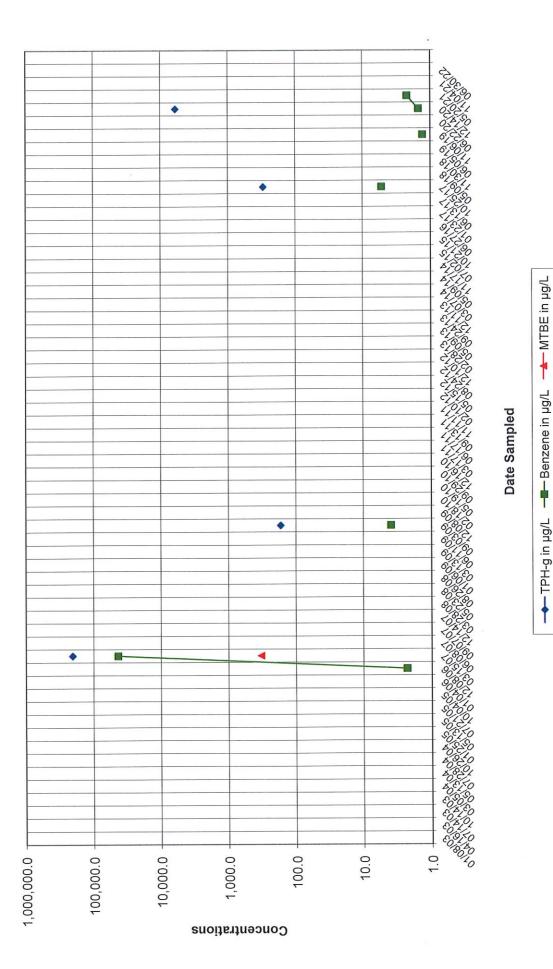
G.W. ELEVATION (FT - AMSL)	1,630.440	1,634.540	1,630.890	1,632.850	1,630.040	1,630.970	1,632.110	1,630.190	1,634.410	1,630.670	1,632.670	1,629.790	1,630.750	
DEPTH TO G.W. EI (FT) (F	11.830 1	7.730 1	11.380 1	9.420	12.230 1	11.300 1	9.060	10.980	6.760	10.500	8.500	11.380	10.420	
TBA (µg/L)	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	ND<25	
TAME (µg/L)	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	
DIPE (µg/L)	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5 ND<2.5 ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	
ETBE (µg/L)	ND<2.5 ND<2.5 ND<2.5 ND<2.5	ND<2.5 ND<2.5 ND<2.5 ND<2.5	ND<2.5 ND<2.5	ND<2.5 ND<2.5	ND<2.5 ND<2.5 ND<2.5	ND<2.5 ND<2.5 ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5 ND<2.5 ND<2.5	ND<2.5 ND<2.5 ND<2.5	ND<2.5 ND<2.5 ND<2.5	ND<2.5	
MTBE (µg/L)	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5 ND<2.5 ND<2.5 ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	ND<2.5	
XYLENES (µg/L)	39.8	41.9	25.7	3.8	ND<0.5	ND<0.5	2,149.0	391.0	ND<0.5	1,201.0	60.6	171.5	ND<0.5	
ETHYL- BENZENE (µg/L)	7.4	11.3	46.9	2.2	ND<0.5	ND<0.5	556.0	97.5	ND<0.5	35.2	31.0	45.0	ND<0.5	
TOLUENE (µg/L)	31.6	41.3	1.0	ND<0.5	ND<0.5	ND<0.5	3,230.0	241.0	ND<0.5	656.0	48.3	183.0	ND<0.5	
BENZENE (µg/L)	23.2	37.7	11.8	ND<0.5	ND<0.5	ND<0.5	3.0	5.3	1.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	
TPH AS DIESEL (µg/L)	AN	AN	NA	NA	NA	AN	ΝA	NA	NA	NA	NA	NA	AN	
TPH AS GASOLINE (µg/L)	280.0	220.0	270.0	ND<100	ND<100	ND<100	10.400.0	2,900.0	ND<100	5,430.0	1.190.0	1,170.0	ND<100	
DATE SAMPLED GASOLINE (µg/L)	11/06/19	06/22/20	12/14/20	05/20/21	11/04/21	06/30/22	08/08/19	11/06/19	06/22/20	12/14/20	05/20/21	11/04/21	06/30/22	
SAMPLE SOURCE							MW-11							


first sampling event conducted by AI, data prior to this date was generated by EAR
 Not Analyzed for this Contaminant
 not analyzed as well was destroyed in soil excavation 03/2008.
 Not analyzed as car was parked over the monitoring well.

APPENDX AVOX

> A.C.C.E.S. INC. – 2336 S. Sepulveda Blvd, Los Angeles, CA 90064 310-822-3800

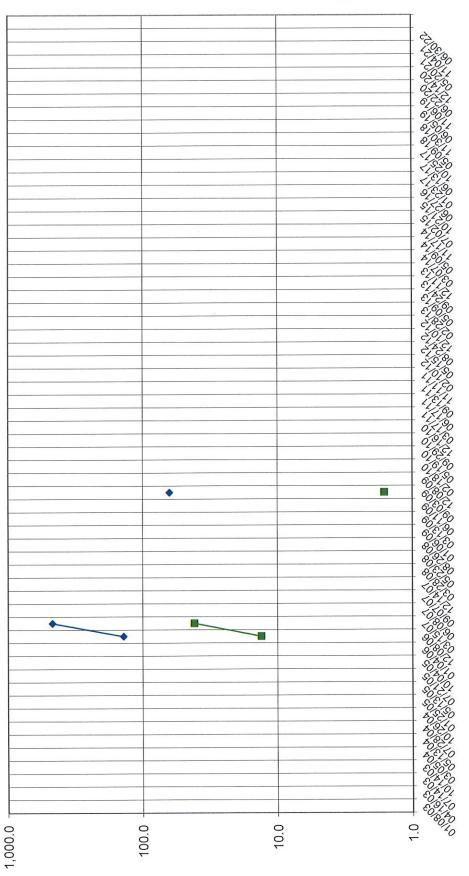
MOBIL BALDWIN Contaminant Concentrations v. Time for MW-1


*** not analyzed as well was destroyed during 3/28/08 soil excavation.

→ MTBE in µg/L

→ TPH-g in µg/L

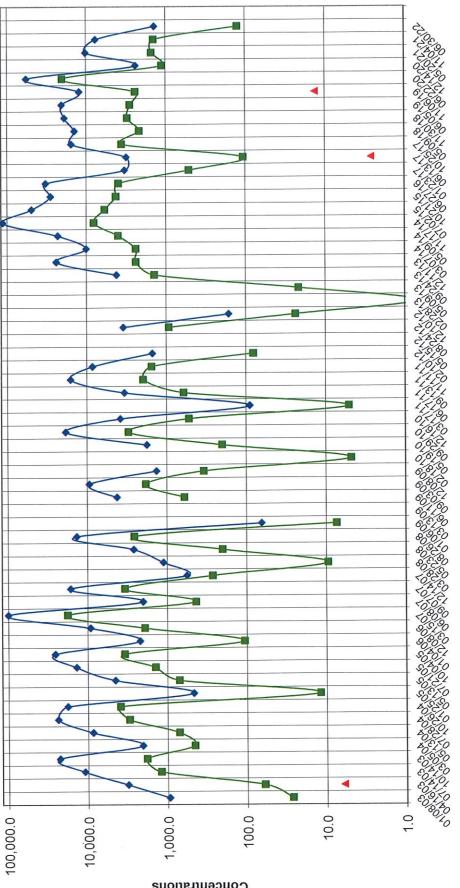
MOBIL BALDWIN


Contaminant Concentrations v. Time for MW-2

*** not analyzed as well was destroyed during 3/28/08 soil excavation. **** Not analyzed as car was parked over the monitoring well.

MOBIL BALDWIN

Contaminant Concentrations v. Time for MW-3

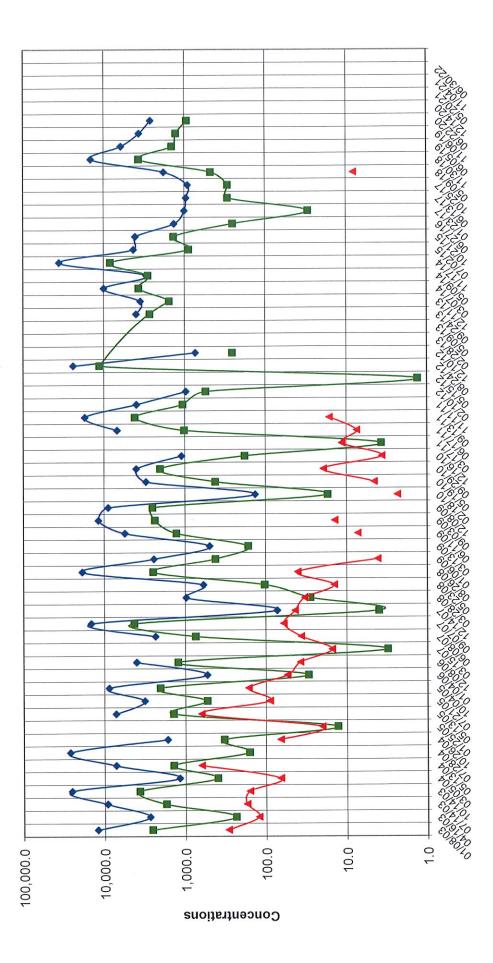

→ TPH-g in µg/L

Date Sampled

Concentrations

MOBIL BALDWIN

Contaminant Concentrations v. Time for MW-4

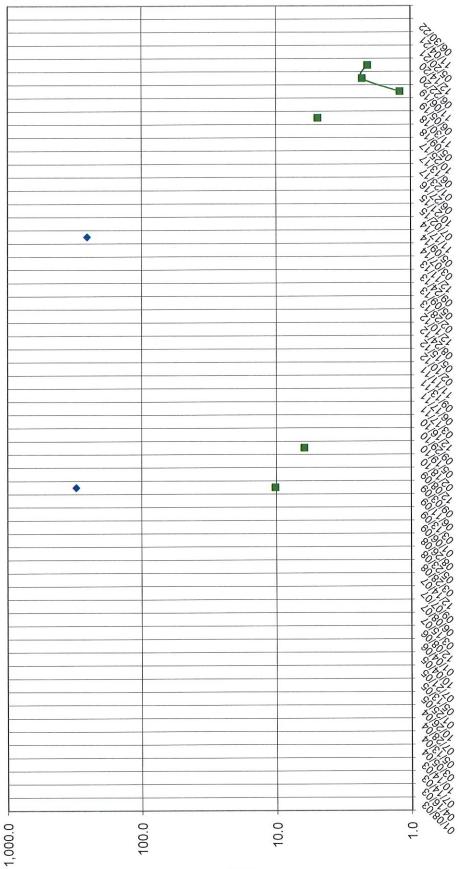

→ MTBE (µg/L) (J/gl) g-H-TPH-g

Date Sampled

Concentrations

MOBIL BALDWIN

Contaminant Concentrations v. Time for MW-5

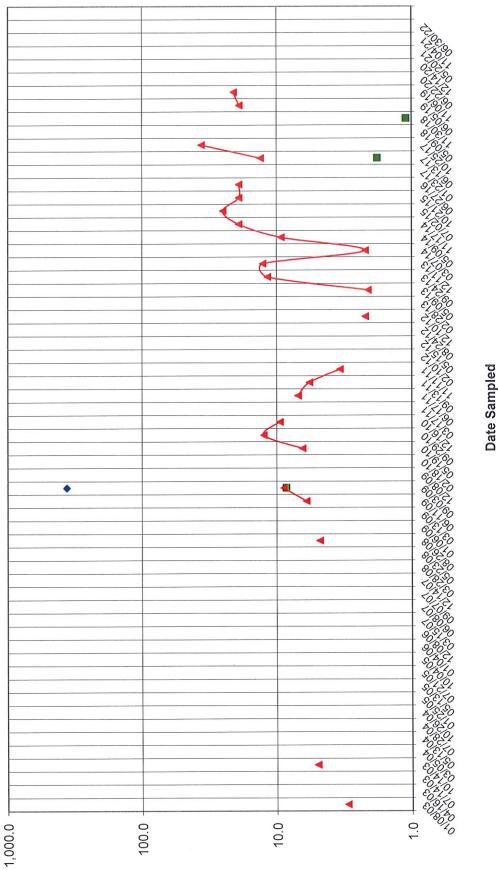


→ TPH-g in µg/L → Benzene in µg/L → MTBE in µg/L

Date Sampled

MOBIL BALDWIN

Contaminant Concentrations v. Time for MW-6

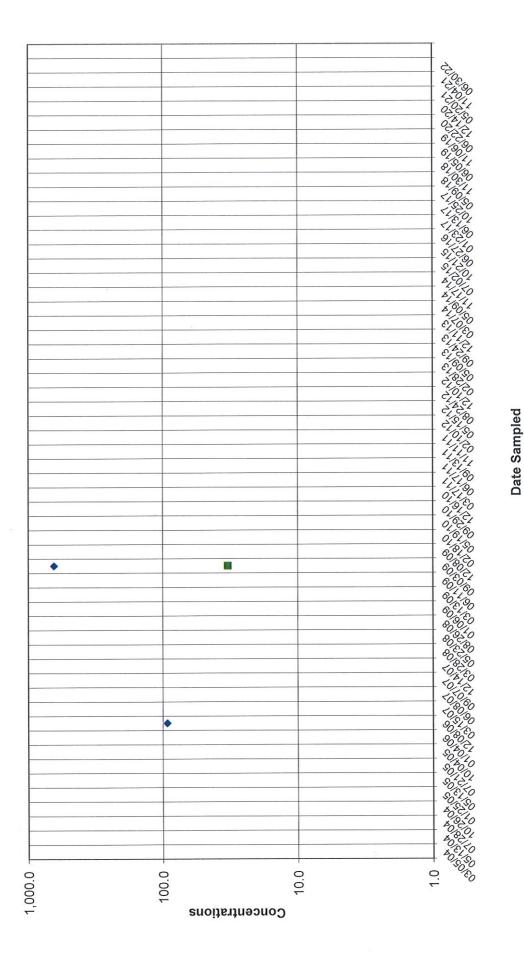

→ TPH-g in µg/L → Benzene in µg/L → MTBE in µg/L

Date Sampled

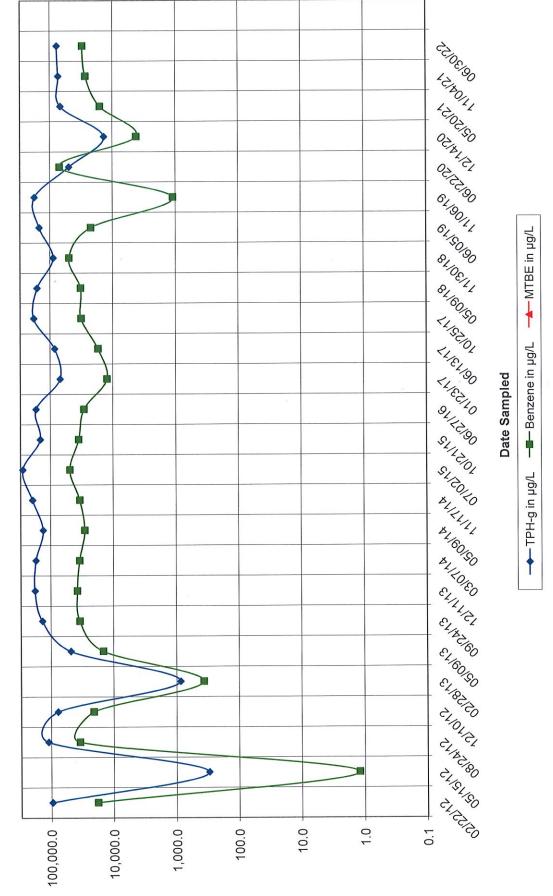
Concentrations

MOBIL BALDWIN

Contaminant Concentrations v. Time for MW-7


→ MTBE in µg/L

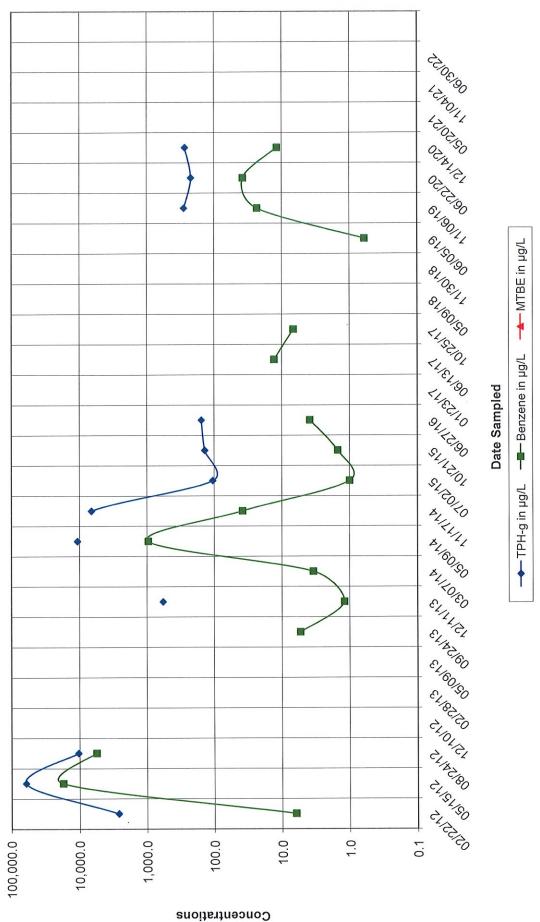
→ TPH-g in µg/L

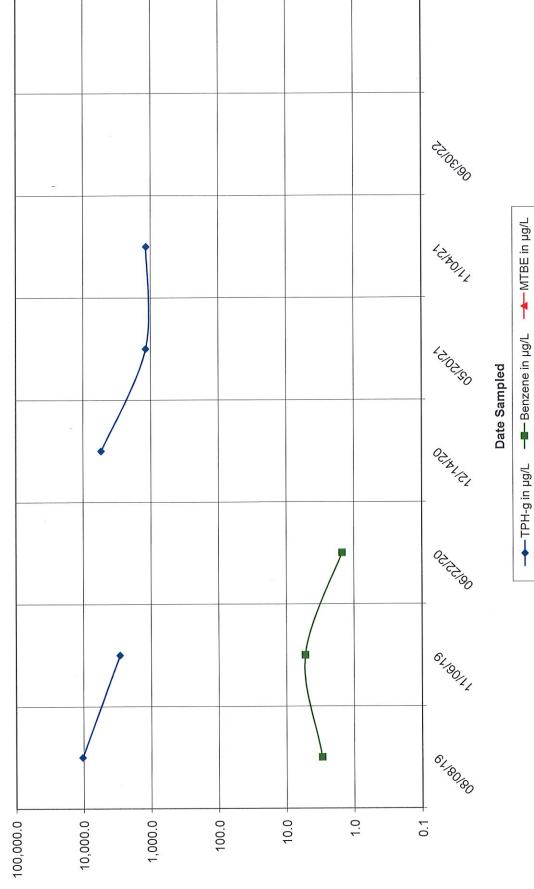

Concentrations

MOBIL BALDWIN

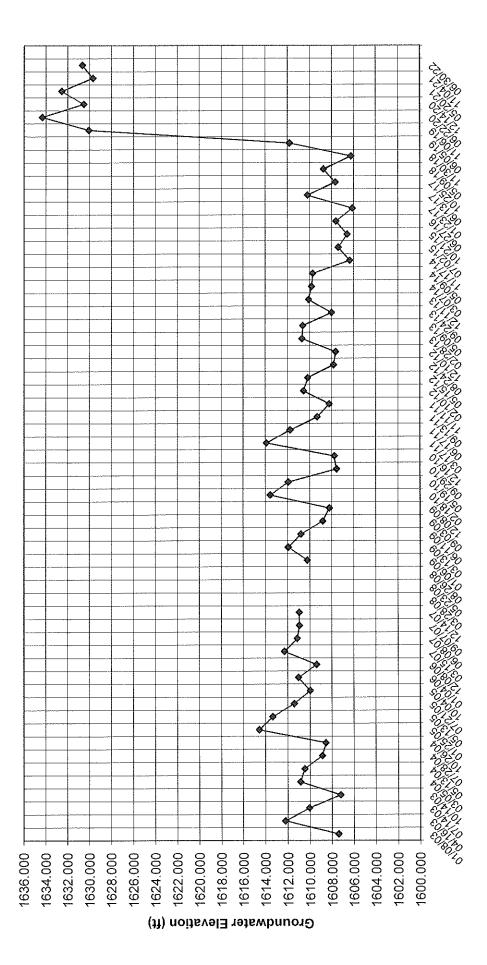
Contaminant Concentrations v. Time for MW-8

→ TPH-g in µg/L — Benzene in µg/L → MTBE in µg/L




Contaminant Concentrations v. Time for MW-9

Concentrations

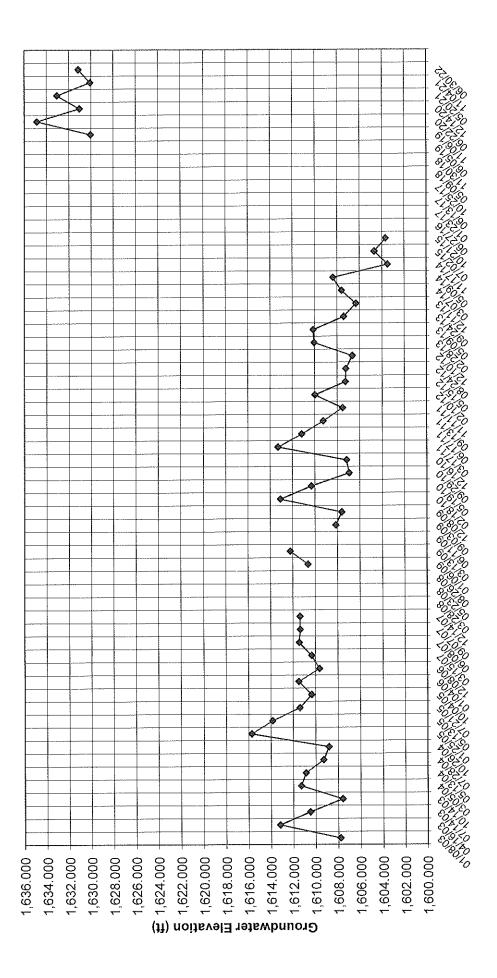

Concentrations

APPENOX NOX

A.C.C.E.S. INC. – 2336 S. Sepulveda Blvd, Los Angeles, CA 90064 310-822-3800

MOBIL BALDWIN

Groundwater Elevation vs. Time for MW-1

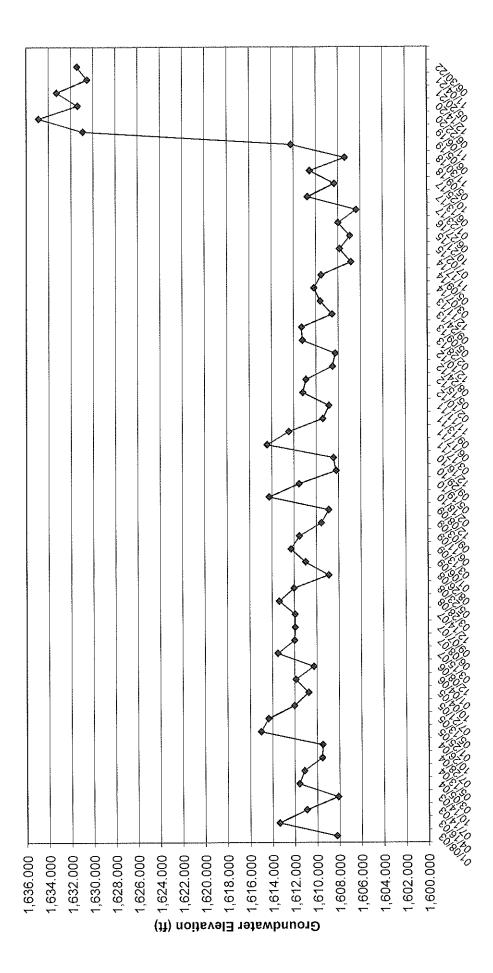


***Not measured as well was destructed during Spring 2008 Soil Excavation.

Date Sampled

MOBIL BALDWIN

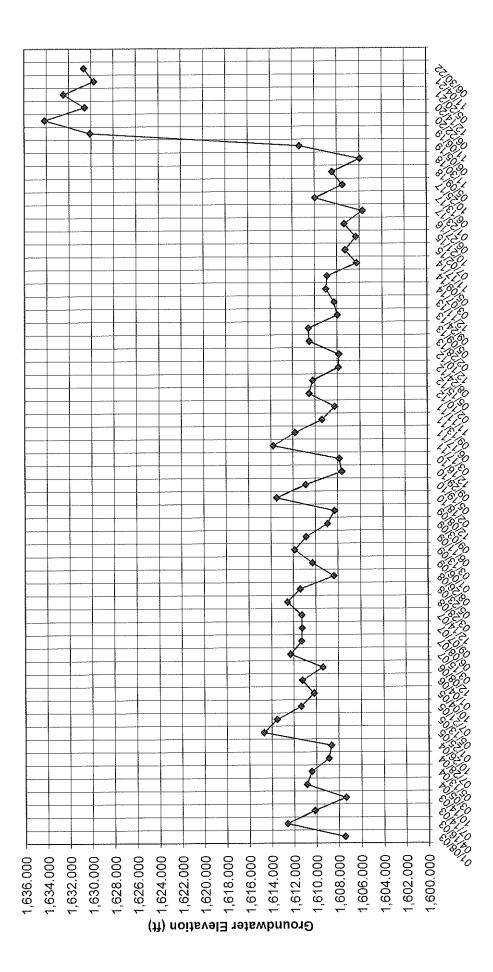
Groundwater Elevation vs. Time for MW-2



Date Sampled

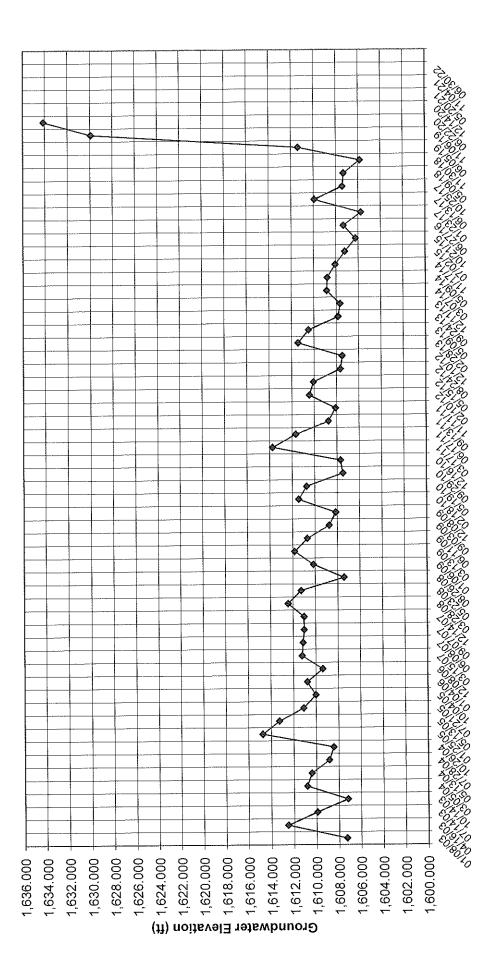
*** Not measured as well was destructed during Spring 2008 Soil Excavation. **** Not measured as car was parked over monitoring well.

MOBIL BALDWIN

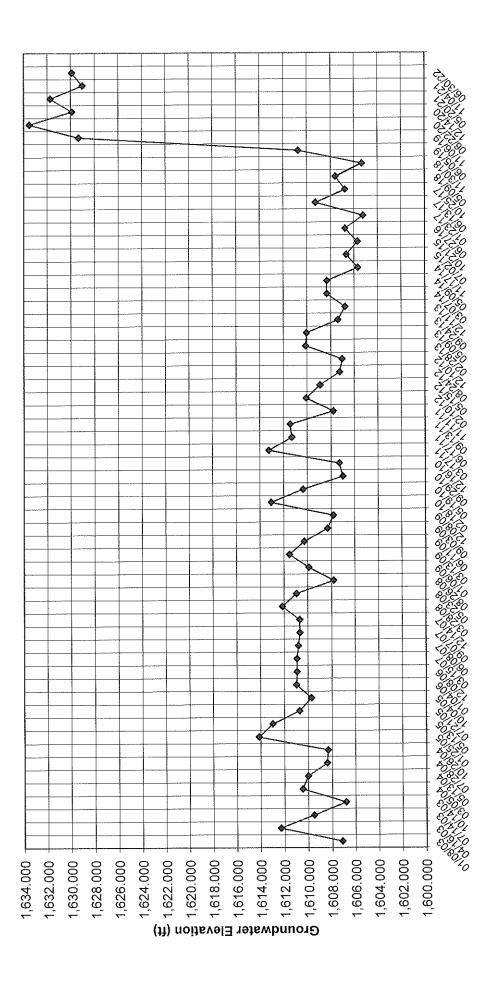

Groundwater Elevation vs. Time for MW-3

Date Sampled

MOBIL BALDWIN


Groundwater Elevation vs. Time for MW-4

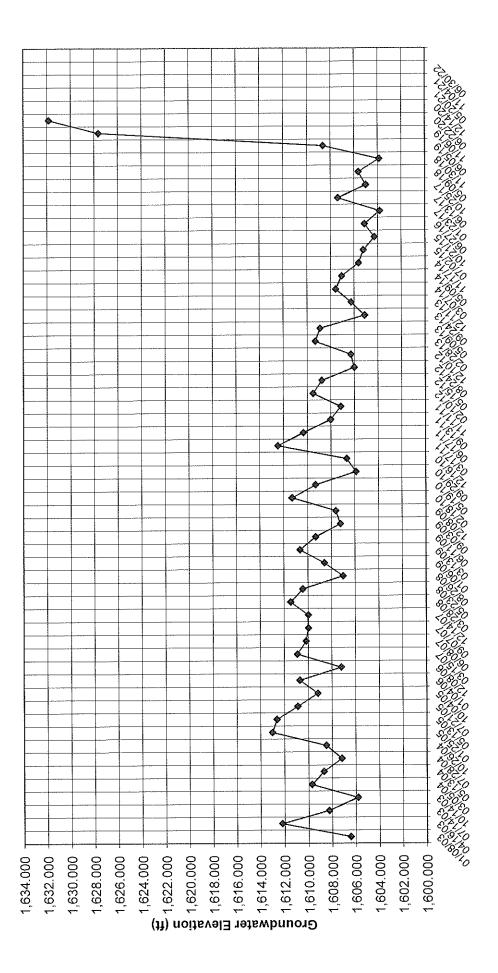
Date Sampled


MOBIL BALDWIN

Groundwater Elevation vs. Time for MW-5

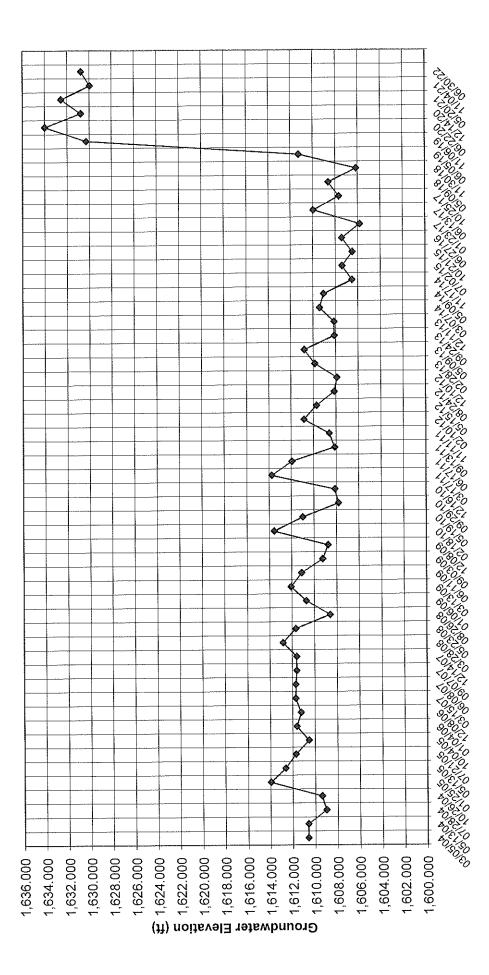
MOBIL BALDWIN

Groundwater Elevation vs. Time for MW-6

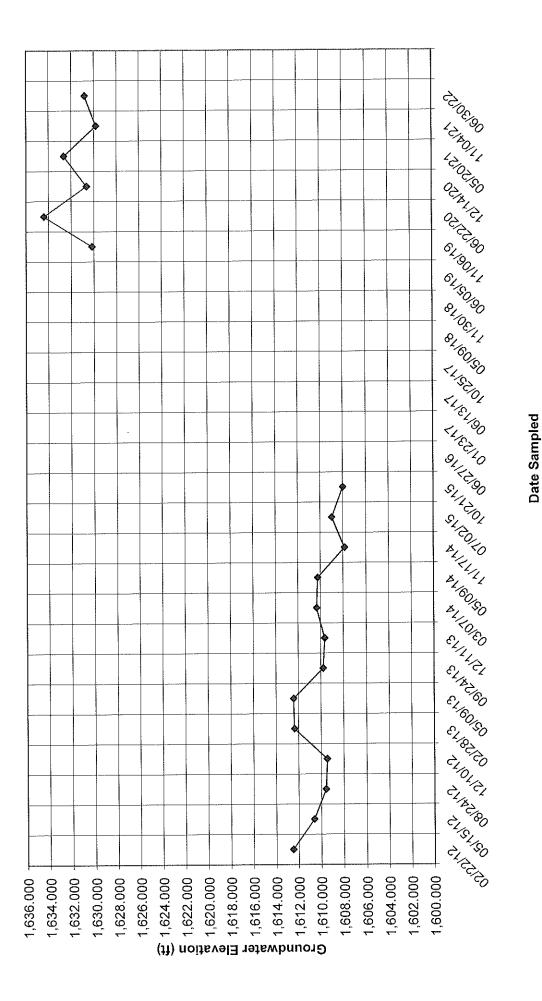


Groundwater Elevation vs. Time

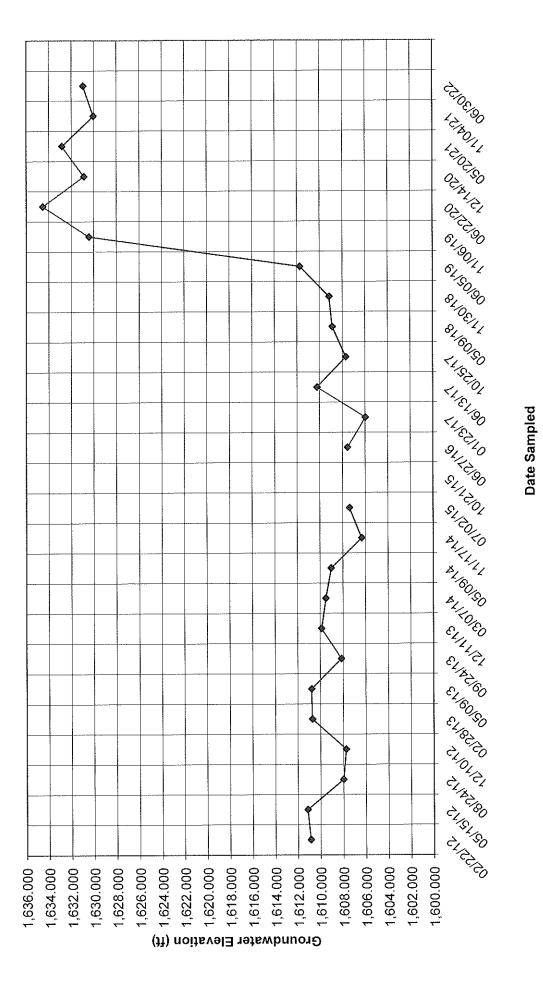
Date Sampled


MOBIL BALDWIN

Groundwater Elevation vs. Time for MW-7

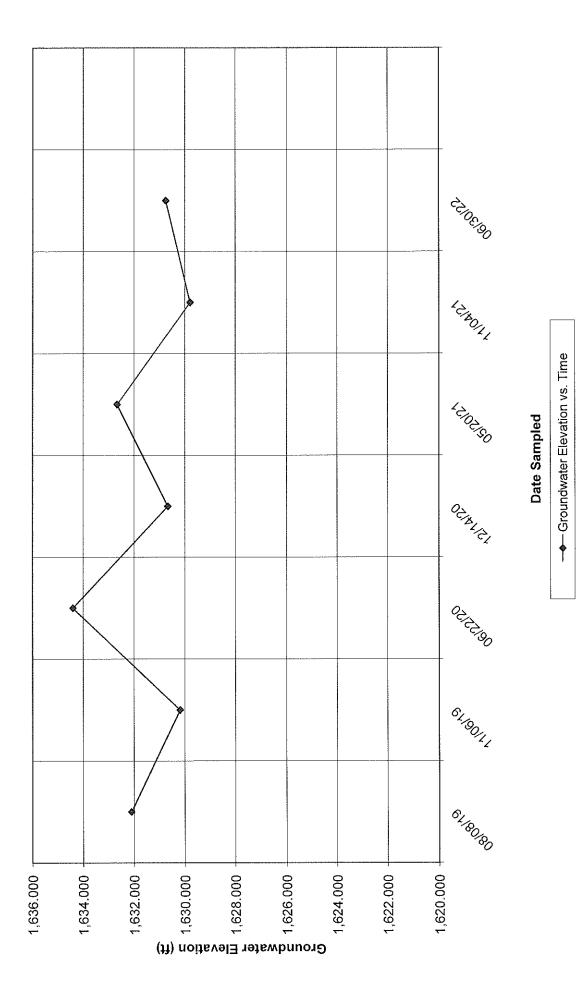

MOBIL BALDWIN

Groundwater Elevation vs. Time for MW-8


MOBIL BALDWIN

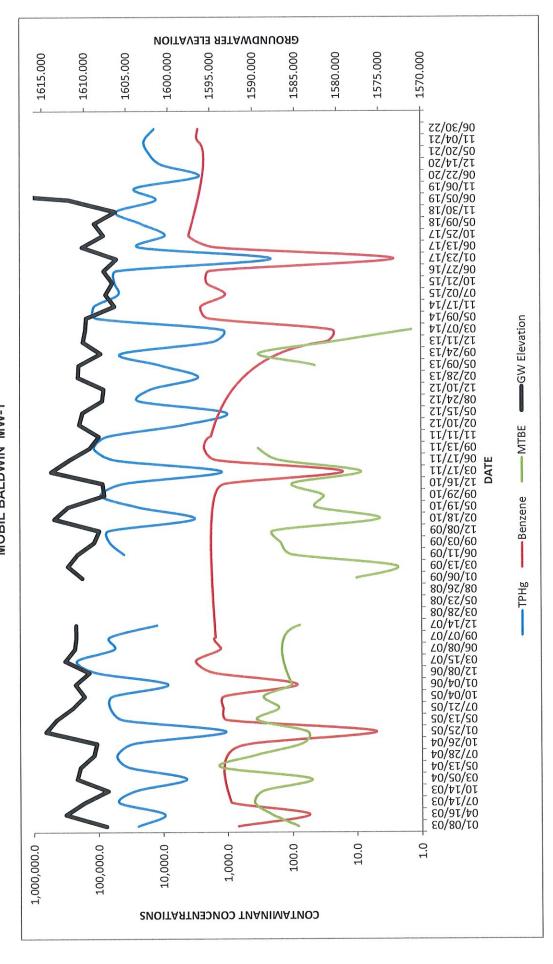
Groundwater Elevation vs. Time for MW-9

MOBIL BALDWIN


Groundwater Elevation vs. Time for MW-10

ł

MOBIL BALDWIN


Groundwater Elevation vs. Time for MW-11

APPENOX APPENOX

> A.C.C.E.S. INC. – 2336 S. Sepulveda Blvd, Los Angeles, CA 90064 310-822-3800

HYDROGRAPH OVER CONCENTRATIONS MOBIL BALDWIN MW-1

A.C.C.E.S. INC. – 2336 S. Sepulveda Blvd, Los Angeles, CA 90064 310-822-3800

WATER V	VELL PURGE AND) <u>SA</u>	MPLE DAT	<u>ra Sł</u>	<u>HEET</u>			
JOB NAME MOBIL E	BALDWIN		C	ATE _	6/20/22			
Well ID: <u>MW-1</u>								
TOC Elevation (feet): 1640.63								
Well Depth (feet):30								
Field Supervisor(s):								
Technician(s):			Jorge					
BEFORE PURGE : Depth to Groundwater	(feet): 9.95	,	w ^a					
Elevation of Groundwa								
VOLUME OF WATER IN WELL (4" casing) =	Depth of Water in Well (ft)	x	Conversion Factor	-	Volume (gal)			
=		_ X	0.653	=				
FREE PRODUCT:	*							
Floating Product: Sheen	Thickness		Color					

Temperature °C	рН	Conductivity	Turbidity	Remark(s)
74.77	7.61	0.893	735	
24.57	7.38	0.7.53	586	
24.59	7.38	0.751	560	
	°C 74.77 24.57	C PIT 74.77 7.61 24.57 7.38	°C pin oonderivity 74.77 7.61 0.893 24.57 7.38 0.753	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Notes:

WATER WELL PURGE AND SAMPLE DATA SHEET									
JOB NAMEMOBIL BALDWIN	DATE 6/30/22								
Well ID:									
TOC Elevation (feet): 1642.41									
Well Depth (feet): 30									
Field Supervisor(s):									
Technician(s): <u>EPUC</u>	page								
BEFORE PURGE: Depth to Groundwater (feet): <u>リ. て</u>									
Elevation of Groundwater (ft. amsl):	Conversion Volume								
IN WELL (4" casing) = (ft)	X Factor = (gal)								
■	X 0.653 =								
FREE PRODUCT:									
Floating Product: Thickness Sheen	Color								

Time	Temperature ⁰ C	pН	Conductivity	Turbidity	Remark(s)
9:50	24.75	7.94	1.96	0.0	
9:55	24.47	7.75	1.94	0.0	
10:00	23.87	7.74	1.98	0.0	

Notes:

÷

	А.	C.	С.	E.S	. Inc.	2336 S Sepulveda Blvd, Los Angeles, CA 9006
--	----	----	----	-----	--------	---

WATER WELL PURGE AND SAMPLE DATA SHEET								
JOB NAME MOBIL E	JOB NAME MOBIL BALDWIN DATE							
Well ID: <u>MW-3</u>								
TOC Elevation (feet):	1643.09							
Well Depth (feet):	32 (28.22)							
Field Supervisor(s):			۲ 					
Technician(s):	GRIS	7017-	د					
BEFORE PURGE: Depth to Groundwater	(feet): 11.63							
·	ter (ft. amsl): 163	. 46						
VOLUME OF WATER IN WELL (4" casing) =	Depth of Water in Well (ft)	Conversion X Factor	Volume = (gal)					
=		X 0.653	-					
		-	·					
FREE PRODUCT:		-						
	Thickness	Color						

Time	│Temperature │°C	рН	Conductivity	Turbidity	Remark(s)
10:25	25.58	8.02	D.689	341	
10:30	24.49	7.94	0.682	460	
(0:35	24.14	7.89	0.720	572	

Notes:

r.

A.C.C.E.S. Inc.	2336 S Sepulveda Blvd, Los Angeles, CA 90064
-----------------	--

WATER WELL PURGE AND SAMPLE DATA SHEET									
JOB NAME MOBIL BAL	IOB NAME MOBIL BALDWIN DAT								
Well ID:MW-4									
TOC Elevation (feet): 1	640.99		-						
Well Depth (feet): 3	2 (30.05)		-						
Field Supervisor(s):									
Technician(s):	ERU			<u>ר^כ</u> ר	<u> </u>				
BEFORE PURGE:	BEFORE PURGE:								
Depth to Groundwater (fe	et): <u>10.32</u>								
Elevation of Groundwater	(ft. amsl): 163	0 (o7						
VOLUME OF WATER i IN WELL (4" casing) =	Depth of Water in Well (ft)	x	Conversion Factor	=	Volume (gal)				
=		X	0.653	=					
FREE PRODUCT:									
Floating Product: Th Sheen	nickness		Color						
Tomporot					Remark(s)				

Time	Temperature ⁰C	рН	Conductivity	Turbidity	Remark(s)
11:00	25.90	7.51	2.45	300	
11:05	25.00	7.55	2.45	328	
(1:10	24.26	7.56	2.48	310	
-		•			

Notes:

к. К

A.(C.(C.E	.S.	Inc.	2336 S Sepulveda Blvd, Los Angeles, CA 90064
-----	-----	-----	-----	------	--

WATER V	VELL PURGE AND	SA	MPLE DAT	<u>A SHEE</u>	ΞT	
	BALDWIN		DA	TE 6/	30/22	
Well ID: MW-5						
TOC Elevation (feet):	1639.63		_			
Well Depth (feet):	32 (29.84)		-			
Field Supervisor(s):			~			
Technician(s):	ERU		7¢	org-		
BEFORE PURGE:					6.4	1. 1. +
Depth to Groundwater	(feet):	W	ell buried	under	r compacted	all
	ter (ft. amsl):					
VOLUME OF WATER IN WELL (4" casing) =	Depth of Water in Well (ft)	x	Conversion Factor		Volume (gal)	
=		X	0.653			
FREE PRODUCT:						
Floating Product: Sheen	Thickness		Color			
					B	

Time	Temperature pH ℃ pH		Conductivity	Turbidity	Remark(s)
		******		······································	

Notes:

4

,

WATER WELL PURGE AN	D SAMPLE [DATA SH	<u>IEET</u>
JOB NAME MOBIL BALDWIN		_ DATE _	6/30/22
Well ID:MW-6			
TOC Elevation (feet):1639.09			
Well Depth (feet): <u>32 (29.00)</u>			
Field Supervisor(s):			
Technician(s):		2019	ــــــــــــــــــــــــــــــــــــــ
BEFORE PURGE: Depth to Groundwater (feet): 9.17-	29.92		
Elevation of Groundwater (ft. amsl):	029.90		
VOLUME OF WATERDepth of Water in WellIN WELL (4" casing)=(ft)	Conversio X Factor	+ - +	Volume (gal)
=	X 0.653	=	······
Floating Product: Thickness	Color		
Time Temperature pH	Conductivity	Turbidity	Remark(s)

Time	Temperature ⁰C	pН	Conductivity	Turbidity	Remark(s)
9:15	25.53	7.24	1.55	270	
9:29	25.10	7.22	1.63	534	
9:25	24.81	777	1.66	502	

Notes:

•

.

WATER V	VELL PURGE AND	<u>S</u> A	MPLE DAT	TA SH	<u>HEET</u>
JOB NAME MOBIL	BALDWIN		D		6/30/22
Well ID: <u>MW-7</u>					
TOC Elevation (feet):	1637.31				
Well Depth (feet):	_35 (27.94)		_		
Field Supervisor(s):					
Technician(s):	GPU C		2°54		
·	(feet):			ьч	roal expension
Depth to Groundwater	• • •			by =	volume (gal)
Depth to Groundwater Elevation of Groundwa VOLUME OF WATER	ater (ft. amsl): Depth of Water in Well		Conversion		Volume
Depth to Groundwater Elevation of Groundwa VOLUME OF WATER IN WELL (4" casing) =	ater (ft. amsl): Depth of Water in Well	x	Conversion Factor		Volume

Time	Temperature ⁰C	pН	Conductivity	Turbidity	Remark(s)

Notes:

A,	С.	C.	E.	S.	Inc.	2336 S Sepulveda Blvd, Los Angeles, CA 900)64
----	----	----	----	----	------	--	-----

WATER WELL PURGE AND	SAMPLE DATA SHEET
JOB NAME _ MOBIL BALDWIN	DATE 6/30/22
Well ID:	
TOC Elevation (feet): <u>1639.89</u>	
Well Depth (feet): 26 (24.92)	
Field Supervisor(s):	
Technician(s):	70gz
	1.12 0.77
VOLUME OF WATER Depth of Water in Well IN WELL (4" casing) = (ft) =	Conversion Volume X Factor = (gal) X 0.653 =
FREE PRODUCT: Floating Product: Thickness Sheen	Color

Time	Temperature °C	рН	Conductivity	Turbidity	Remark(s)
8:45	25.22	6.76	2.58	255	
8:50	24.58	6.85	2.58	271	
8:55	24.25	6-91	2.59	269	

Notes:

.

Number in parenthesis in WELL DEPTH is bottom of well measured in 2007

.

.

WATER V	VELL PURGE AND	<u>SA</u>	MPLE DAT	<u> </u>	HEET
JOB NAME MOBIL E	BALDWIN		D	ATE	6/30/22
Well ID: <u>MW-9</u>					
TOC Elevation (feet):	1640.79		-		
Well Depth (feet):	25				
Field Supervisor(s):					
Technician(s):	ERIC		Jorge		
BEFORE PURGE:		c	7.98		
Depth to Groundwater			······································		
Elevation of Groundwa	ter (ft. amsl):	630	. 81		
VOLUME OF WATER IN WELL (4" casing) =	Depth of Water in Well (ft)	x	Conversion Factor	=	Volume (gal)
=		X	0.653	=	

Floating Product:	Thickness	Color	
Sheen			

Time	Temperature °C	pН	Conductivity	Turbidity	Remark(s)
1:12	26.06	7.42	1.50	459	
1:15	25.18	7.28	1.49	1000	
1:20	25.23	7.27	1.47	6001	

Notes:

, i

. .

.

A.	.C.	C.	Ε.	S.	Inc.	2336 S Sepulveda Blvd, Los Angeles,	CA 90064
----	-----	----	----	----	------	-------------------------------------	----------

JOB NAME MOBIL B	ALDWIN		D	ATE	6/30/22
Well ID: MW-10					
TOC Elevation (feet):	1642.27				
Well Depth (feet):	25		_		
Field Supervisor(s):					
Technician(s):	GRIC		7259-1		
BEFORE PURGE:					
BEFORE PURGE: Depth to Groundwater Elevation of Groundwater	11.2	0.9	17		
Depth to Groundwater	11.2	0.9 ×	Conversion Factor	=	Volum (gal)
Depth to Groundwater Elevation of Groundwat VOLUME OF WATER	ter (ft. amsl):63 Depth of Water in Well		Conversion	=	
Depth to Groundwater Elevation of Groundwat VOLUME OF WATER IN WELL (4" casing) =	ter (ft. amsl):63 Depth of Water in Well	x	Conversion Factor		

Time	Temperature °C	nperature pH C		Turbidity	Remark(s)	
	24.97	7.48	0.872	428		
	24.54	7.53	0.912	0.0		
	24.21	7.49	1.08	0.0		

Notes:

, ([>]

<u>WATER V</u>	VELL PURGE AND	<u>SA</u>	MPLE DA	TA SH	<u>IEET</u>		
JOB NAME MOBIL BALDWIN DATE 6/30/22							
Well ID: <u>MW-11</u>							
TOC Elevation (feet):	1641.17						
Well Depth (feet):	20		-				
Field Supervisor(s):							
Technician(s):	ERIC		Jorga				
BEFORE PURGE:	BEFORE PURGE:						
Depth to Groundwater	(feet): <u>(ひ・</u> 42	-					
Elevation of Groundwa	ter (ft. amsl):163	30.	75				
VOLUME OF WATER IN WELL (4" casing) =	Depth of Water in Well (ft)	х	Conversion Factor	=	Volume (gal)		
=		X	0.653	=			

Floating Product:	Thickness	C	Color
Sheen			

<u>ا</u> ل	рН	Conductivity	Turbidity	Remark(s)
25.90	7.64	2.22	540	
25.64			0.0	
25.60	7.67	2.23	0.0	
	25.64	25.64 7.73	25.64 7.73 2.22	25.64 7.73 2.22 0.0

Notes:

۴,

.

APPENDIX G

A.C.C.E.S. INC. -- 2336 S. Sepulveda Blvd, Los Angeles, CA 90064 310-822-3800

NON-HAZARDOUS WASTE DATA FORM

NO. 63069 _/

		GENERATING SITE				
	NAME Mobil Baldwin	Mobil Baldwin				
	ADDRESS 21020 Cajalco Road	21020 Cajalco Road				
	CITY, STATE, ZIP Perris, CA 92370	Perris, CA 92370				
BY GENERATOR	CITY, STATE, ZP	PROFILE NO				
ENER	CONTAINERS: No 2 GALLONS * 1	WEIGHT				
		THER				
ê	WASTE DESCRIPTION Non-Hazardous Water GENERATING COMPONENTS OF WASTE PPM %	NG PROCESS				
Ē						
COMPLETED		Nieto & Sons PO# April 2022				
8	6					
6						
	HANDLING INSTRUCTIONS: Wear Appropriate Protective Clothing	$\Delta - I = 0$				
	THE GENERATOR CERTIFIES THAT THE	dure to 22 CCENCEL 04/18/22 GNATURE DATE				
	NIETO AND SONS TRUCKING, INC.	EPA I.D. NO.				
E	1281 BREA CANYON ROAD	SERVICE ORDER NO.				
TRANSPORTER	ADDRESS BREA, CALIFORNIA 92821 PICK UP DATE04/18					
TRAN	PHONE NO	04/18/22				
	TRUCK, UNIT, I.D. NO. 2.55 TYPED OR PRINTED FULL NAME & SI					
	NAME World Oil Recycling	EPA LD, NO. CAT080013352 DISPOSAL METHOD				
	ADDRESS 2000 N. Alameda Street					
λ	CITY, STATE, ZIP <u>Compton, CA 90222</u>					
TSD FACILITY	PHONE NO	0				
FAC	Daniel Pool	N 01/10/22				
1SD	TYPED OR PRINTED FULL NAME & SI					
	GEN OLD/NEW L A TONS	For 2nd Semi-Annual 2021 (4th Qtr 2021)				
	TRANS S B	(4th (2tr 2021)				
	C/Q HWDF NONE	DISCREPANCY				

APPENDIX J

FEMA Flood Insurance Rate Map

NOTES TO USERS

p is for use in administering the National Flood Insurance Program. It necessarily identify all areas subject to flooding, particularly from local sources of small size. The community map repository should be d for possible updated or additional flood hazard information.

detailed information in areas where Base Flood Elevations In mole detailed information in areas where beever how detailed information in areas where beever how detailed in a set of the set o M. Users should be aware that BFEs shown on the FIRM represent whole-foct levalions. These BFEs are intended for flood insurance urposes only and should not be used as the sole source of flood information. Accordingly, flood elevation data presented in the FIS hould be utilized in conjunction with the FIRM for purposes of ion and/or floodplain management.

non andor floodplain management. I Base Flood Elevations shown on this map appy only landward of h American Vertical Datum of 1989 (NAVD 88). Users of this FIRM should te that cossils flood elevations are also provided in the Summary of Elevations tables in the Flood Insurance Study report for this juridication. In shown in the Summary of Silware Floadions tables should be used for shown on this FIRM.

ies of the **floodways** were computed at cross sections and interpolated cross sections. The floodways were based on hydraulic considerations and to requirements of the National Flood Insurance Program. Floodway and other pertinent floodway data are provided in the Flood Insurance port for this junctiction.

areas not in Special Flood Hazard Areas may be protected by flood structures. Refer to Section 2.4 "Flood Protection Measures" of the surance Study report for information on flood control structures for this

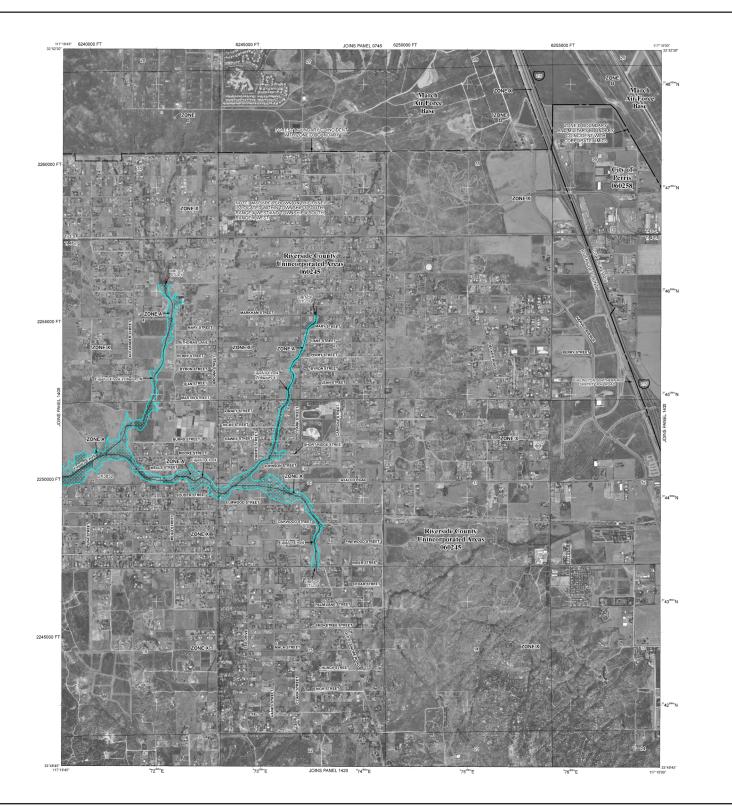
jection used in the presention of the may use Universal Transvere (U10) socie 1. The horizontal datum vise hvd. S., chrisal upherod, zes in datum, spheroid, pojection or UTM zones used in the poduction of or adjacent jurisolicions may result in slight positional differences in map across jurisolicion boundaries. These differences do not affect the of this FIRM.

vacions on this map are referenced to the North American Vertical Datum These flood elevations must be compared to structure and ground is referented to the same vertical datum. For information regarding on between the National Geodetic Vertical Datum of 1528 and the reference of the National Geodetic Survey at ving address:

wing of the services winds for the services winds for the services winds for the services winds for the services winds winds winds and the services winds wi

in current elevation, description, and/or location information for **bench** shown on this map, please contact the Information Services Branch National Geodenic Survey at (301) 713-3242, or visit its website at wingsingaa.gov.

ap information shown on this FIRM was derived from U.S. Geological Digital Orthophoto Quadrangles produced at a scale of 1:12,000 from uphy dated 1994 or later.


yor users in terms or later. approximation on the previous FIRM for this particulation. Tations than those shown on the previous FIRM for this particulation. The sand floodways that were transferred from the previous FIRM may have used to contern to these new stream channel configurations. As a result, authorithms hydraulic data in the flood insurance Study Report (which authorithms hydraulic data) may reflect stream channel distances that make its shown on this map.

te limits shown on this map are based on the best data available at the publication. Because changes due to annexations or de-annexations may aurred after this map was published, may users chould contact appropriate ity officials to verify current corporate limit locations.

refer to the separately printed Map Index for an overview map of the showing the layout of map panels, community map repository addresses; sting of Communities table containing National Flood Insurance Program r each community as well as a listing of the panels on which each ity is located.

the FEMA Map Service Center at 1-800-358-9616 for information on products associated with this FIRM. Available products may include ly issued Letters of Map Change, a Flood Insurance Study report, and/or rations of this map. The FEMA Map Derive Center may also be reached 1 + 160-358 9620 and fis website a http://msc.lema.oor.

we questions about this map or questions concerning the National Flood e Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) or FEMA website at <u>http://www.fema.gov.</u>

LEGEND SPECIAL FLOOD HAZARD AREAS SUBJECT TO INUN BY THE 1% ANNUAL CHANCE FLOOD The 1% annual flood (100-year flood), also known as the base flood, is the flood that chance of being equaled or exceeded in any given year. The Special Flood Hazar A mars subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazar A 22 and A AE, AH, AO, AK, A99, V, and VE. The Base Flood Elevation is the wat elevation of the 1% annual chance flood. ZONE A No Base Flood Elevations deter ZONE AF Base Flood Flevations determined ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); B ZONE AC Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain deaths determined. For areas of alluvial fan flooding, velo Special Flood Hazard Area for merly protected from the 1% annu ZONE AF cicates that the former flood control system is being restored to otection from the 1% annual chance or greater flood. ZONE A99 Area to be protected from 1% annual chance flood by a Fed protection system under construction; no Base Flood ZONE V Coastal flood zone with velocity hazard (wave action); no B Coastal flood zone with velocity hazard (wave action); Be ZONE VE FLOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that must be of encroachment so that the 1% annual chance flood can be carried without substantial in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance floo average depths of less than 1 foot or with drainage areas 1 square mile; and areas protected by levees from 1% annual cha OTHER AREAS ZONE X Areas determined to be outside the 0.2% annual chance floodplai ZONE D Areas in which flood hazards are undetermined, but possible. $\langle | | \rangle$ COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREA OTHERWISE PROTECTED AREAS (OPAs) 1.1.1.1 nally located within or adjacent to Special Flood Hazard Ar 1% annual chance floodplain boundary 0.2% annual chance floodolain boundary Floodway boundary Zone D boundary CRRS and OPA boundary Boundary dividing Special Flood Hazard Area Zr boundary dividing Special Flood Hazard Areas of diffe Flood Elevations, flood depths or flood velocities. Base Flood Elevation line and value; elevation in feet* ~ 513~~~ Base Flood Elevation value where uniform within zone; in feet⁴ (EL 987) erican Vertical Datum of 198 (A)_____(A) (A)_____(A) Cross section line Transect line 87"07'45", 32"22'30" Geographic coordinates referenced to the North Ar Datum of 1983 (NAD 83), Western Hemisphere ²⁴76⁰⁰⁰"N 1000-meter Universal Transverse Mercator grid values, 11N 5000-foot grid ticks: California State Plane coordinate system, zone VI (FIPSZONE 0406), Lambert Conformal 600000 F . Bench mark (see explanation in Notes to Users section FIRM owner) DX5510 •M15 River Mile MAP REPOSITORY Refer to listing of Map Repositories on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP August 28, 2008 EFFECTIVE DATE(8) OF REVISION(8) TO THIS PANEL For community map revision history prior to countywide mapping, refer to the Cor Map History table located in the Flood Insurance Study report for this jurisdiction. termine if flood insurance is available in this community, con or call the National Flood Insurance Program at 1-809-638-6620. MAP SCALE 1" = 1000 _ ----NFIP PANEL 1410G FIRM M FLOOD INSURANCE RATE ROG RIVERSIDE COUNTY, CALIFORNIA AND INCORPORATED AREAS INSURANCE PANEL 1410 OF 3805 (SEE MAP INDEX FOR FIRM PANEL LA CONTAINS: COMMUNITY PERRIS, CITY OF RIVERSIDE COUNTY NUMBER PANEL 080258 1410 080245 1410 NAVERONIAL FLOOD Notice to User: The Map Number shown below used when placing map orders; the Communit shown above should be used on insurance applicat subject community. MAP NI 060650 EFFECTIVE

AUGUST 2

Federal Emergency Management

APPENDIX K

Low Water Crossing Repair Narrative

Project: Cajalco Sewer Improvement Project

RE: SEWER LINE ALIGNMENT ALTERNATIVE COSTS

Alignment Option 1: Cajalco Road Arizona Crossing Proposed Repair Section:

The proposed repair to accommodate sewer main installation would consist of cutting a 9' section through the reinforced concrete pavement. The purpose of the 9' trench is to allow for an extra two (2) feet of concrete pavement to be removed which would include leaving a minimum of 1' of exposed and cleaned #4 rebar to splice to. This 9' section would be perpendicular to the road and a 8' section parallel to the road. Similarly, the 9' x 8' section would also extend to 6" below the existing dual 28" arch CMPs to allow for removal and replacement of these pipes after the sewer line is installed. The existing section below the reinforced concrete pavement contains 1-sack slurry above the pipe that would have to be removed and replaced after the sewer line is installed. The remaining portion of the trench would only need to be 5' to accommodate the sewer pipe. This accounts for removal and replacement of existing 92' segment of the Arizona crossing.

APPENDIX L

Engineer's Opinion of Probable Construction Cost

Eastern Municipal Water District Mead Valley Trunk Sewer Engineer's Opinion of Probable Construction Cost Preliminary Design January 2022

Item	Quantity	Unit	Article	Extension			
1	1	LS	Mobilization, Bonds, Permits, Cleanup, and Demobilization	1obilization, Bonds, Permits, Cleanup, and Demobilization \$289,000			
2	1	LS	Excavation Support Systems	\$250,000	\$250,000		
3	1	LS	Traffic Control	\$200,000	\$200,000		
			Temporary Erosion Control/Storm Water Pollution				
4	1	LS	Prevention Plan (SWPPP)	\$50,000	\$50,000		
5	1	LS	Pothole Utilities	\$50,000	\$50,000		
6	1	LS	Dewatering	\$200,000	\$200,000		
7	1	LS	Cajalco Lift Station decommissioning	Cajalco Lift Station decommissioning \$100,000			
8	1	LS	Brown Street low water crossing repair \$50,000		\$50,000		
9	1	LS	Rock Excavation Allowance \$200,000		\$200,000		
10	8,561	LF	Construct new 12-Inch PVC Sewer	\$2,996,350			
11	1,335	LF	Construct new 10-Inch PVC Sewer	Construct new 10-Inch PVC Sewer \$320			
12	2,426	LF	Construct new 8-inch PVC Sewer \$290		\$703,540		
13	31	EA	Construct new 4' dia MH	\$15,000	\$465,000		
				Subtotal	\$5,981,090		
			Cont	tingency, 30%	\$1,794,327		
	Total						
			1	0% Escalation	\$8,552,959		

The planning level opinions of construction cost presented herein represents Ardurra's judgment as a design-professional and is supplied for the general guidance of the District. Since Ardurra has no control over the cost of labor and material (particularly related to recent inflationary spikes and supply chain issues), or over competitive bidding or market conditions, Ardurra does not guarantee the accuracy of such opinions as compared to contractor bids or actual cost. This opinion of cost does not include estimates for other project elements including, but not limited to, design, inspection, construction management, District administration, environmental compliance, and right of way acquisition.

APPENDIX M

Project Schedule

						Eastern Municipal Water District Mead Valley Cajalco Sewer Project Project Schedule
D	Task Name	Duration	Start	Finish	Predecessors	2023 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep C
1	Preliminary Design	171 days	Tue 8/16/22	Tue 4/11/23		
2	Draft Preliminary Design Submitt	a0 days	Fri 1/27/23	Fri 1/27/23		1/27
3	Preliminary Design Roll Out Workshop	1 day	Tue 2/7/23	Tue 2/7/23	2	1
4	Draft Pothole Plan	1 wk	Wed 2/8/23	Tue 2/14/23	2	II Contraction of the second se
5	EMWD Review of Pothole Map	2 wks	Wed 2/22/23	Tue 3/7/23	4	
6	Final Pothole Plan	1 wk	Wed 3/8/23	Tue 3/14/23	5	II Contraction of the second sec
7	Pothole ROW Permit	1 mon	Wed 3/15/23	Tue 4/11/23	6	
8	Potholing	1 mon	Wed 4/12/23	Tue 5/9/23	7	
9	Final Draft Preliminary Design Report	7 wks	Wed 2/8/23	Tue 3/28/23	3	
10	CEQA Compliance	200 days	Fri 1/27/23	Thu 11/2/23		
11	IS/MND	10 mons	Fri 1/27/23	Thu 11/2/23	2	
12	Final Design	160 days	Wed 3/29/23	Tue 11/7/23		
13	60% Submittal	6 wks	Wed 3/29/23	Tue 5/9/23	9	
14	EMWD Review	15 days	Wed 5/10/23	Tue 5/30/23	13	
15	90% Submittal	6 wks	Wed 5/31/23	Tue 7/11/23	14,8	
16	EMWD Review	15 days	Wed 7/12/23	Tue 8/1/23	15	
17	100% Submittal	4 wks	Wed 8/2/23	Tue 8/29/23	16	
18	EMWD Review	15 days	Wed 8/30/23	Tue 9/19/23	17	
19	Final Submittal	4 wks	Wed 9/20/23	Tue 10/17/23	18	
20	NPDES Discharge Permit	9 mons	Wed 3/29/23	Tue 12/5/23	9	
21	County of Riverside ROW Permit	3 mons	Wed 7/12/23	Tue 10/3/23	15	
22	EMWD Spec Review	15 days	Wed 10/18/23	3 Tue 11/7/23	19	
23	Bid Phase	50 days	Wed 11/8/23	Wed 1/17/24		
24	Advertisement/Bidding	5 wks	Wed 11/8/23	Tue 12/12/23	22	
25	E&O Committee Meeting	0 days	Wed 1/3/24	Wed 1/3/24		1/3
26	EMWD Board Approval	0 days	Wed 1/17/24	Wed 1/17/24		↓ 1/17
27	Contractor Insurance/Contract	1 mon	Wed 12/13/23	8 Tue 1/9/24	26	
28	Construction	445 days	Wed 1/3/24	Tue 9/16/25		
29	Submittals	1 mon	Wed 1/3/24	Tue 1/30/24	25,11	
30	Procurement	1 mon	Wed 1/31/24	Tue 2/27/24	29	
31	ROW Permit	1 mon	Wed 1/3/24	Tue 1/30/24	25	
32	Mobilization	1 mon	Wed 2/28/24	Tue 3/26/24	30	
33	Sewer Installation, Carpinus Drive to Barton Street	15 wks	Wed 3/27/24	Tue 7/9/24	32	
34	Sewer Installation Barton Street to Brown Street	26 wks	Wed 7/10/24	Tue 1/7/25	33	
35	Sewer Installation, Brown Street to Day Street	28 wks	Wed 1/8/25	Tue 7/22/25	34	
36	Clark Street Lift Station Decommissioning	1 mon	Wed 7/23/25	Tue 8/19/25	35	
37	Punchlist/Demobilization	4 wks	Wed 8/20/25	Tue 9/16/25	36	
38	Construction Complete/Acceptar	10 days	Tue 9/16/25	Tue 9/16/25	37	

